Kurs:Analysis (Osnabrück 2021-2023)/Teil II/Vorlesung 41/kontrolle

Es ist im Allgemeinen schwierig, eine Differentialgleichung explizit zu lösen. Wir besprechen daher zwei approximierende Verfahren, nämlich das eulersche Polygonzugverfahren und den Potenzreihenansatz.



Das Polygonzugverfahren

Mit dem (eulerschen) Polygonzugverfahren wird die Lösungskurve einer Differentialgleichung diskret approximiert.


Es sei ein Vektorfeld

auf einer offenen Menge und eine Anfangsbedingung gegeben. Das eulersche Polygonzugverfahren funktioniert folgendermaßen: Man wählt eine Schrittweite und berechnet rekursiv die Punktfolge , , durch und

Zu einem schon konstruierten Punkt wird also das -fache des Richtungsvektors zum Zeitpunkt an diesem Punkt hinzuaddiert. Dies funktioniert nur, solange die Punkte im Definitionsbereich des Vektorfeldes liegen. Der zu dieser Punktfolge gehörende Streckenzug oder Polygonzug

ist die lineare Interpolation mit , d.h. für mit ist

Dieser Streckenzug stellt eine stückweise lineare Approximation der Lösungskurve des Anfangswertproblems dar. Für eine kleinere Schrittweite wird die Approximation im Allgemeinen besser.


Bei einer eindimensionalen ortsunabhängigen Differentialgleichung

ergibt sich einfach als eine Stammfunktion zu . Wendet man in dieser Situation Verfahren 41.1 zum Startzeitpunkt , zum Startpunkt und zur Schrittweite an, so ergibt sich die rekursive Beziehung

Daher ist offenbar

D.h. dass man zu dem Ausgangswert das Treppenintegral zur äquidistanten Unterteilung (und zur durch auf dem Teilintervall gegebenen Treppenfunktion) hinzuaddiert. Der zugehörige Streckenzug ist die (stückweise lineare) Integralfunktion zu dieser Treppenfunktion.



Beispiel  Beispiel 41.3 ändern

Wir wollen für das Differentialgleichungssystem

mit der Anfangsbedingung

gemäß Verfahren 41.1 einen approximierenden Streckenzug berechnen. Wir wählen die Schrittweite . Somit ist

und


Wer erwähnen kurz eine weitere approximative Lösungsmöglichkeit für Differentialgleichungen, siehe hierzu den Anhang und die Übungen.

Es sei ein Anfangswertproblem

zu einem Vektorfeld

gegeben, wobei die Komponentenfunktionen , , polynomial (oder durch Potenzreihen gegeben) seien. Dann lässt sich ein Potenzreihenansatz für die Lösung durchführen. Das bedeutet, dass man den Ansatz mit unbestimmten Koeffizienten macht, und diese Koeffizienten (bis zu einem gewünschten Grad) aus den Gleichungen

sukzessive bestimmt. Die Anfangsbedingungen

legen dabei die konstanten Koeffizienten der Potenzreihen fest. In das Differentialgleichungssystem werden die Potenzreihen links und rechts eingesetzt und ausgewertet, wobei die Ableitung links formal zu nehmen ist und rechts die Reihen formal zu addieren und zu multiplizieren sind. Dies ergibt Gleichungen für Potenzreihen in , die durch Koeffizientenvergleich, beginnend mit den Koeffizienten von kleinem Grad, gelöst werden können.




Lineare Differentialgleichungssysteme

Es sei ein offenes reelles Intervall. Eine Differentialgleichung der Form

wobei

eine Matrix ist, deren Einträge allesamt Funktionen

sind, heißt homogene lineare gewöhnliche Differentialgleichung oder homogenes lineares gewöhnliches Differentialgleichungssystem.

Es handelt sich also um die Differentialgleichung zum Vektorfeld

Dieses Vektorfeld ist zu jedem fixierten Zeitpunkt eine lineare Abbildung

Ausgeschrieben liegt das Differentialgleichungssystem

vor. Es gibt immer die Nulllösung, also die konstante Abbildung mit dem Nullvektor als Wert, diese nennt man auch die triviale Lösung.

Für lineare Differentialgleichungssysteme gibt es wieder eine inhomogene Variante.


Es sei ein offenes reelles Intervall. Eine Differentialgleichung der Form

wobei

eine Matrix ist, deren Einträge allesamt Funktionen

sind und wobei

eine Abbildung ist, heißt inhomogene lineare gewöhnliche Differentialgleichung oder inhomogenes lineares gewöhnliches Differentialgleichungssystem. Die Abbildung heißt dabei Störabbildung.

Insgesamt liegt das Differentialgleichungssystem

vor.

Die explizite Lösbarkeit eines solchen Systems hängt natürlich von der Kompliziertheit der beteiligten Funktionen und ab. In der folgenden Situation kann man das System auf einzelne eindimensionale lineare inhomogene Differentialgleichungen zurückführen und dadurch sukzessive lösen.


Es sei ein offenes Intervall und es liege eine inhomogene lineare gewöhnliche Differentialgleichung der Form

mit stetigen Funktionen und und den Anfangsbedingungen

vor.

Dann lässt sich diese Gleichung lösen, indem man sukzessive unter Verwendung der zuvor gefundenen Lösungen die inhomogenen linearen gewöhnlichen Differentialgleichungen in einer Variablen, nämlich

löst.

Beweis

Das ist trivial.


Die Lösungen eines solchen linearen Differentialgleichungssystems in oberer Dreiecksgestalt stehen also in Bijektion zu den Lösungen der linearen inhomogenen Differentialgleichungen in einer Ortsvariablen, wobei die Störfunktionen jeweils mit den anderen Lösungen in der beschriebenen Weise zusammenhängen. Insbesondere übertragen sich Existenz- und Eindeutigkeitsaussagen.

Auch wenn man ein homogenes System lösen möchte, so muss man in den Einzelschritten inhomogene Differentialgleichungen lösen.


Wir betrachten das homogene lineare Differentialgleichungssystem

für . Die zweite Zeile dieses Systems bedeutet

das ist eine homogene lineare Differentialgleichung in einer Variablen. Ihre Lösungen sind gemäß Satz 29.2 gleich

mit einem . Die erste Zeile des Systems führt daher auf

Dies ist eine inhomogene lineare Differentialgleichung in einer Variablen. Die zugehörige homogene Gleichung besitzt als eine Lösung. Nach Satz 29.10 müssen wir eine Stammfunktion von

finden, eine solche ist

Daher ist

die allgemeine Lösung der inhomogenen Gleichung. Also ist die allgemeine Lösung des Systems gleich




Lineare Differentialgleichungssysteme mit konstanten Koeffizienten

Falls die Funktionen alle konstant sind, so spricht man von einem linearen Differentialgleichungssystem mit konstanten Koeffizienten, welche im Wesentlichen mit Mitteln der linearen Algebra gelöst werden können. Dazu ist es sinnvoll, von vornherein auch komplexe Koeffizienten zuzulassen.


Eine Differentialgleichung der Form

wobei

eine Matrix mit Einträgen ist, heißt homogene lineare gewöhnliche Differentialgleichung mit konstanten Koeffizienten oder homogenes lineares gewöhnliches Differentialgleichungssystem mit konstanten Koeffizienten.


Es sei ein offenes Intervall. Eine Differentialgleichung der Form

wobei eine Matrix mit Einträgen ist und

eine Abbildung, heißt inhomogene lineare gewöhnliche Differentialgleichung mit konstanten Koeffizienten oder inhomogenes lineares gewöhnliches Differentialgleichungssystem mit konstanten Koeffizienten.

Die Störfunktion muss also nicht konstant sein.

Es sei

eine lineare gewöhnliche Differentialgleichung höherer Ordnung mit konstanten Koeffizienten, d.h. die sind reelle (oder komplexe) Zahlen. Das gemäß Lemma 40.14 zugehörige Differentialgleichungssystem

mit

und

wird in dieser Situation zum linearen Differentialgleichungssystem mit konstanten Koeffizienten