Kurs:Einführung in die Algebra (Osnabrück 2009)/Vorlesung 19/kontrolle



Algebraisch abgeschlossene Körper

Wir haben zuletzt erwähnt, dass ein lineares Polynom über einem Körper stets irreduzibel ist, und dass es als Faktor in der Primfaktorzerlegung eines Polynoms genau dann vorkommt, wenn eine Nullstelle von ist. Diejenigen Körper, für die es im Polynomring außer den linearen Polynomen keine weiteren irreduziblen Polynome gibt, bekommen einen eigenen Namen.


Ein Körper heißt algebraisch abgeschlossen, wenn jedes nichtkonstante Polynom eine Nullstelle in besitzt.



Es sei ein Körper. Dann sind die beiden folgenden Eigenschaften äquivalent.

  1. ist algebraisch abgeschlossen.
  2. Jedes nicht-konstante Polynom zerfällt in Linearfaktoren.

Beweis

Siehe Aufgabe 19.6.


Wir erwähnen hier ohne Beweis den Fundamentalsatz der Algebra, der 1799 von Gauß bewiesen wurde.




Endliche Untergruppen der Einheitengruppe eines Körpers

Wir wollen zeigen, dass die Einheitengruppe von , , zyklisch ist. Dafür brauchen wir neben den Aussagen der letzten Vorlesung über die Nullstellen von Polynomen noch einige gruppentheoretische Vorbereitungen.



Lemma  Lemma 19.4 ändern

Es sei eine kommutative Gruppe und Elemente der endlichen Ordnungen und , wobei und teilerfremd seien.

Dann hat die Ordnung .

Sei . Wir haben zu zeigen, dass ein Vielfaches von ist. Es ist

da ja die Ordnung von ist. Aus dieser Gleichung erhält man, dass ein Vielfaches der Ordnung von , also von sein muss. Da und teilerfremd sind, folgt aus Satz 17.14, dass ein Vielfaches von ist. Ebenso ergibt sich, dass ein Vielfaches von ist, sodass , wieder aufgrund der Teilerfremdheit, ein Vielfaches von sein muss.



Der Exponent einer endlichen Gruppe ist die kleinste positive Zahl mit der Eigenschaft, dass für alle ist.



Lemma  Lemma 19.6 ändern

Es sei eine endliche kommutative Gruppe und sei , wobei den Exponenten der Gruppe bezeichnet.

Dann ist zyklisch.

Sei

die Primfaktorzerlegung der Gruppenordnung. Der Exponent der Gruppe ist

Es sei ein Primteiler von . Wegen

gibt es ein Element , dessen Ordnung ein Vielfaches von ist. Dann gibt es auch (in der von erzeugten zyklischen Untergruppe) ein Element der Ordnung . Dann hat das Produkt nach Lemma 19.4 die Ordnung .



Satz  Satz 19.7 ändern

Es sei eine endliche Untergruppe der multiplikativen Gruppe eines Körpers .

Dann ist zyklisch.

Es sei und der Exponent dieser Gruppe. Dies bedeutet, dass alle Elemente eine Nullstelle des Polynoms sind. Nach Korollar 18.10 ist die Anzahl der Nullstellen aber maximal gleich dem Grad, sodass folgt. Nach Lemma 19.6 ist dann zyklisch.




Satz  Satz 19.8 ändern

Es sei eine Primzahl.

Dann ist die Einheitengruppe zyklisch mit der Ordnung .

Es gibt also Elemente mit der Eigenschaft, dass die Potenzen , , alle Einheiten durchlaufen.

Dies folgt unmittelbar aus Satz 19.7, da ein endlicher Körper ist.




Eine Einheit heißt primitiv (oder eine primitive Einheit), wenn sie die Einheitengruppe erzeugt.


Beispiel  Beispiel 19.10 ändern

Wir betrachten die Einheitengruppe des Restklassenkörpers . Nach Satz 19.8 ist sie zyklisch und es gibt daher Erzeuger der Einheitengruppe, also primitive Elemente. Wie kann man diese finden? Man ist hierbei prinzipiell auf Probieren angewiesen, man kann dies allerdings deutlich vereinfachen. Man weiß, dass die Einheitengruppe Elemente besitzt, als Ordnung von Elementen dieser Gruppe kommen also nur und in Frage. Es gibt genau ein Element mit der Ordnung , nämlich , und ein Element mit der Ordnung , nämlich . Alle anderen Elemente haben also die Ordnung oder , und genau die letzteren sind primitiv. Der erste Kandidat ist . Wir müssen also

ausrechnen. Es ist und daher ist

Die Ordnung ist also , und die ist nicht primitiv. Betrachten wir die . Es ist und daher ist

also wieder nicht primitiv. Der nächste Kandidat muss nicht gecheckt werden, denn wegen ist sofort (diese Beobachtung gilt für alle Quadratzahlen, und zwar auch für diejenigen Zahlen, die nur modulo ein Quadrat sind). Betrachten wir also . Es ist . Damit ist

Daher hat die Ordnung und ist ein primitives Element.

Man kann diesen Sachverhalt auch so ausdrücken, dass die Abbildung

einen Gruppenisomorphismus definiert. Dieser übersetzt die Addition in die Multiplikation, daher spricht man von einer diskreten Exponentialfunktion und nennt die Umkehrabbildung auch einen diskreten Logarithmus. Solche Abbildungen spielen eine wichtige Rolle in der Kryptologie. Wenn man wie in diesem Beispiel einen solchen Isomorphismus gefunden hat, so kann man viele Eigenschaften der Einheitengruppe in der „einfacheren“ Gruppe entscheiden. Z.B. sind in alle ungeraden Elemente außer ein Gruppenerzeuger, daher sind in der Einheitengruppe alle Elemente der Form

primitiv.




Endliche Körper

Ein Körper heißt endlich, wenn er nur endlich viele Elemente besitzt.

Wir erinnern kurz an die Charakteristik eines Ringes. Zu jedem kommutativen Ring gibt es den kanonischen Ringhomomorphismus , und der Kern davon ist ein Ideal in und hat daher die Form mit einem eindeutig bestimmten . Diese Zahl nennt man die Charakteristik von . Ist ein Körper, so ist dieser Kern oder mit einer Primzahl . Man spricht von Charakteristik null oder von positiver Charakteristik .

Wir haben bereits die endlichen Primkörper zu einer Primzahl kennengelernt. Sie besitzen Elemente, und ein Körper besitzt genau dann die Charakteristik , wenn er diesen Primkörper enthält. Genau dann hat man auch eine Faktorisierung

wobei die hintere Abbildung injektiv ist, d.h. es liegt eine

Körpererweiterung

vor. Für eine Körpererweiterung gilt stets folgende Beobachtung.


Es sei eine Körpererweiterung.

Dann ist in natürlicher Weise ein - Vektorraum.

Die Skalarmultiplikation

wird einfach durch die Multiplikation in gegeben. Die Vektorraumaxiome folgen dann direkt aus den Körperaxiomen.


Über die Anzahl der Elemente in einem Körper gilt folgende wichtige Bedingung.



Es sei ein endlicher Körper.

Dann besitzt genau Elemente, wobei eine Primzahl ist und .

Der endliche Körper kann nicht die Charakteristik besitzen, und als Charakteristik eines Körpers kommt ansonsten nach Lemma 13.9 nur eine Primzahl in Frage. Diese sei mit bezeichnet. Das bedeutet, dass den Körper enthält. Damit ist aber ein Vektorraum über , und zwar, da endlich ist, von endlicher Dimension. Es sei die Dimension, . Dann hat man eine -Vektorraumisomorphie

und somit besitzt gerade Elemente.


Die vorstehende Aussage gilt allgemeiner für endliche Ringe, die einen Körper enthalten. Es sei schon jetzt erwähnt, dass es zu jeder Potenz bis auf Isomorphie genau einen Körper mit Elementen gibt. Dies werden wir in zwei Wochen beweisen. Für einige Beispiele siehe auch die Aufgaben.


Wir konstruieren einen Körper mit Elementen und knüpfen dabei an Beispiel 19.10 an. Da die primitiv ist, folgt, dass das Polynom irreduzibel ist. Andernfalls müsste es eine Nullstelle haben und dann wäre ein Quadrat mit . Doch dann wäre , was nicht der Fall ist.

Es folgt nach Satz 18.5, dass

ein Körper ist. Dieser hat Elemente, da man jede Restklasse auf genau eine Weise als  mit schreiben kann ( bezeichne die Restklasse von ). Dieser Körper enthält , und die Ordnungen dieser Elemente ändern sich nicht (und sie sind insbesondere nicht primitiv im größeren Körper).

Wir möchten eine primitive Einheit in diesem Körper finden und orientieren uns an Lemma 19.4. Die Ordnung von ist . Wir müssen für jede dieser Primzahlpotenzen ein Element mit dieser Ordnung finden. Die hat die Ordnung . Das Element hat die Ordnung , es ist nämlich

Um ein Element der Ordnung zu finden, ziehen wir sukzessive Quadratwurzeln aus . Es ist

Eine Quadratwurzel aus ist , wegen

Um eine Quadratwurzel für zu finden, setzen wir an, was zum Gleichungssystem und über führt. Es ist dann

was zu bzw. zur biquadratischen Gleichung

führt. Normieren ergibt . Quadratisches Ergänzen führt zu

Daher ist und somit und , also ist ein Element der Ordnung . Damit ist insgesamt

eine primitive Einheit nach Lemma 19.4.




Satz  Satz 19.15 ändern

Es sei ein endlicher Körper.

Dann ist das Produkt aller von verschiedener Elemente aus gleich .

Die Gleichung hat in einem Körper nur die Lösungen und , die allerdings gleich sein können. Das bedeutet, dass für immer ist. Damit kann man das Produkt aller Einheiten als

schreiben. Ist , so ist das Produkt . Ist hingegen , so fehlt in dem Produkt der zweite Faktor und das Produkt ist .



Es sei eine Primzahl.

Dann ist .

Dies folgt unmittelbar aus Satz 19.15, da ja die Fakultät durch alle Zahlen zwischen und läuft, also durch alle Einheiten im Restklassenkörper .



<< | Kurs:Einführung in die Algebra (Osnabrück 2009) | >>

PDF-Version dieser Vorlesung

Arbeitsblatt zur Vorlesung (PDF)