Kurs:Riemannsche Flächen (Osnabrück 2022)/Arbeitsblatt 27



Aufgaben

Bestimme für die projektive Gerade eine meromorphe Funktion, die die Hauptteilverteilung realisiert, die in den Hauptteil , in den Hauptteil und in den Hauptteil besitzt.



Bestimme für die projektive Gerade eine meromorphe Funktion, die die Hauptteilverteilung realisiert, die in den Hauptteil und in den Hauptteil besitzt.


Zur folgenden Aufgabe vergleiche Aufgabe 19.12.


Begründe, dass eine kompakte zusammenhängende riemannsche Fläche genau dann das Geschlecht besitzt, wenn ihre Divisorenklassengruppe vom Grad trivial ist.



Es sei ein Körper und sei ein irreduzibles Polynom. Es sei

ein Element in der einfachen endlichen Körpererweiterung vom Grad . Zeige, dass die Spur von gleich ist.



Wir betrachten die Potenzierung

und die zugehörige Körpererweiterung

Bestimme die Spur von und von der holomorphen Differentialform .



Es sei eine endliche holomorphe Abbildung mit der Blätterzahl zwischen den riemannschen Flächen und . Es sei eine holomorphe Differentialform auf mit der zurückgezogenen Differentialform auf . Zeige .



Zeige, wie man aus Satz 27.10 zurückerhalten  (die Trivialität geht ja selbst in den Beweis ein) kann, dass auf der projektiven Geraden alle holomorphen Differentialformen trivial sind.



Man gebe ein Beispiel für eine nichtkompakte zusammenhängende riemannsche Fläche zusammen mit einer meromorphen Funktion mit einem Hauptdivisor der Form und einer holomorphen Differentialform derart, dass nicht zur Periodengruppe von gehört, wobei ein Verbindungsweg von nach ist.



<< | Kurs:Riemannsche Flächen (Osnabrück 2022) | >>

PDF-Version dieses Arbeitsblattes

Zur Vorlesung (PDF)