Kurs:Analysis (Osnabrück 2021-2023)/Teil I/Vorlesung 18



Differenzierbare Funktionen

In dieser Vorlesung betrachten wir Funktionen

wobei eine offene Menge in ist. Das ist eine Menge derart, dass es zu jedem auch eine offene Umgebung , , gibt, die ganz in liegt. Typische Beispiele sind .



Es sei offen, ein Punkt und

eine Funktion. Zu , , heißt die Zahl

der Differenzenquotient von zu und .

Der Differenzenquotient ist die Steigung der Sekante am Graphen durch die beiden Punkte und , diese Situation wird auch durch das Steigungsdreieck dargestellt. Für ist dieser Differenzenquotient nicht definiert. Allerdings kann ein sinnvoller Limes für existieren. Dieser repräsentiert dann die Steigung der „Tangente“.


Es sei offen, ein Punkt und

eine Funktion. Man sagt, dass differenzierbar in ist, wenn der Limes

existiert. Im Fall der Existenz heißt dieser Limes der Differentialquotient oder die Ableitung von in , geschrieben

Die Ableitung in einem Punkt ist, falls sie existiert, ein Element in . Häufig nimmt man die Differenz als Parameter für den Limes des Differenzenquotienten, und lässt gegen gehen, d.h. man betrachtet

Die Bedingung wird dann zu , . Wenn die Funktion einen eindimensionalen Bewegungsvorgang beschreibt, also eine von der Zeit abhängige Bewegung auf einer Strecke, so ist der Differenzenquotient die (effektive) Durchschnittsgeschwindigkeit zwischen den Zeitpunkten und und ist die Momentangeschwindigkeit zum Zeitpunkt .


Es seien und sei

eine sogenannte affin-lineare Funktion. Zur Bestimmung der Ableitung in einem Punkt betrachtet man

Dies ist konstant gleich , sodass der Limes für gegen existiert und gleich ist. Die Ableitung in jedem Punkt existiert demnach und ist gleich . Die Steigung der affin-linearen Funktion ist also die Ableitung.



Wir betrachten die Funktion

Der Differenzenquotient zu und ist

Der Limes davon für gegen ist . Die Ableitung ist daher .




Lineare Approximierbarkeit



Es sei offen, ein Punkt und

eine Funktion.

Dann ist in genau dann differenzierbar, wenn es ein und eine Funktion

gibt mit stetig in und und mit

Wenn differenzierbar ist, so setzen wir

Für die Funktion muss notwendigerweise

gelten, um die Bedingungen zu erfüllen. Aufgrund der Differenzierbarkeit existiert der Limes

und hat den Wert . Dies bedeutet, dass in stetig ist.
Wenn umgekehrt und mit den angegebenen Eigenschaften existieren, so gilt für die Beziehung

Da stetig in ist, muss auch der Limes links für existieren.


Die in diesem Satz formulierte Eigenschaft, die zur Differenzierbarkeit äquivalent ist, nennt man auch die lineare Approximierbarkeit. Die affin-lineare Abbildung

heißt dabei die affin-lineare Approximation. Ihr Graph heißt die Tangente an im Punkt . Die durch gegebene konstante Funktion kann man als konstante Approximation ansehen. Das Konzept der linearen Approximierbarkeit erlaubt es, die Differenzierbarkeit auf die Stetigkeit (einer anderen Funktion) zurückzuführen und dadurch verschiedene Rechenregeln einfach beweisen zu können.


Es sei offen, ein Punkt und

eine Funktion, die im Punkt differenzierbar sei.

Dann ist stetig in .

Dies folgt direkt aus Satz 18.5.



Ableitungsregeln
Eine Veranschaulichung der Produktregel: Der Zuwachs eines Flächeninhalts entspricht der Summe der beiden Produkte aus Seitenlänge und Seitenlängezuwachs. Für den infinitesimalen Zuwachs ist das Produkt der beiden Seitenlängenzuwächse irrelevant.



Es sei offen, ein Punkt und

Funktionen, die in differenzierbar seien. Dann gelten folgende Differenzierbarkeitsregeln.

  1. Die Summe ist differenzierbar in mit
  2. Das Produkt ist differenzierbar in mit
  3. Für ist auch in differenzierbar mit
  4. Wenn keine Nullstelle in besitzt, so ist differenzierbar in mit
  5. Wenn keine Nullstelle in besitzt, so ist differenzierbar in mit

(1). Wir schreiben bzw. mit den in Satz 18.5 formulierten Objekten, also

und

Summieren ergibt

Dabei ist die Summe wieder stetig in mit dem Wert .
(2). Wir gehen wieder von

und

aus und multiplizieren die beiden Gleichungen. Dies führt zu

Aufgrund von Lemma 12.12 für Limiten ist die aus der letzten Zeile ablesbare Funktion stetig mit dem Wert für .
(3) folgt aus (2), da eine konstante Funktion differenzierbar mit Ableitung ist.
(4). Es ist

Da nach Korollar 18.6 stetig in ist, konvergiert für der linke Faktor gegen und wegen der Differenzierbarkeit von in konvergiert der rechte Faktor gegen .
(5) folgt aus (2) und (4).


Diese Regeln heißen Summenregel (1), Produktregel (2) und Quotientenregel (5).



Eine Polynomfunktion

ist in jedem Punkt differenzierbar, und für die Ableitung gilt

Dies folgt für die Potenfunktionen durch Induktion über aus der Produktregel und daraus mit Lemma 18.7.


Die folgende Regel heißt Kettenregel.


Es seien und offene Mengen in und seien

und

Funktionen mit . Es sei in differenzierbar und sei in

differenzierbar.

Dann ist auch die Hintereinanderschaltung

in differenzierbar mit der Ableitung

Aufgrund von Satz 18.5 kann man

und

schreiben. Daher ergibt sich

(wenn man durch ersetzt)

Die hier ablesbare Restfunktion

ist stetig in mit dem Wert .


Eine Veranschaulichung für die Ableitung der Umkehrfunktion. Die Umkehrfunktion besitzt den an der Hauptdiagonalen gespiegelten Graphen und die Tangente wird mitgespiegelt.



Es seien und offene Mengen in und sei

eine bijektive stetige Funktion mit einer stetigen Umkehrfunktion

Es sei in

differenzierbar mit .

Dann ist auch die Umkehrfunktion in differenzierbar mit

Wir betrachten den Differenzenquotienten

und müssen zeigen, dass der Limes für existiert und den behaupteten Wert annimmt. Es sei dazu eine Folge in , die gegen konvergiert. Aufgrund der vorausgesetzten Stetigkeit von konvergiert auch die Folge mit den Gliedern gegen . Wegen der Bijektivität ist für alle . Damit ist

wobei die rechte Seite nach Voraussetzung existiert.



Die Funktion

ist die Umkehrfunktion der Funktion mit (eingeschränkt auf ). Deren Ableitung in einem Punkt ist . Nach Satz 18.10 gilt daher für die Beziehung

Im Nullpunkt ist nicht differenzierbar.

Die Funktion

ist die Umkehrfunktion der Funktion mit Deren Ableitung in ist , dies ist für von verschieden. Nach Satz 18.10 ist für somit

Im Nullpunkt ist nicht differenzierbar.




Höhere Ableitungen

Es sei offen und

eine Funktion. Man sagt, dass differenzierbar ist, wenn für jeden Punkt die Ableitung von in existiert. Die Abbildung

heißt die Ableitung (oder Ableitungsfunktion) von .


Es sei offen und

eine Funktion. Man sagt, dass -mal differenzierbar ist, wenn -mal differenzierbar ist und die -te Ableitung differenzierbar ist. Die Ableitung

nennt man dann die -te Ableitung von .


Es sei offen und

eine Funktion. Man sagt, dass n-mal stetig differenzierbar ist, wenn n-mal differenzierbar ist und die n-te Ableitung stetig ist.


<< | Kurs:Analysis (Osnabrück 2021-2023)/Teil I | >>

PDF-Version dieser Vorlesung

Arbeitsblatt zur Vorlesung (PDF)