Kurs:Lineare Algebra (Osnabrück 2017-2018)/Teil II/Arbeitsblatt 52
- Übungsaufgaben
Es sei ein metrischer Raum. Zeige, dass die offenen Kugeln offen sind.
Es sei ein metrischer Raum. Zeige, dass die abgeschlossenen Kugeln abgeschlossen sind.
Es sei ein metrischer Raum und sei ein Punkt. Zeige, dass abgeschlossen ist.
Es sei ein Hausdorffraum und es sei eine Teilmenge, die die induzierte Topologie trage. Es sei kompakt. Zeige, dass abgeschlossen in ist.
Es sei ein metrischer Raum. Zeige, dass folgende Eigenschaften gelten.
- Die leere Menge und die Gesamtmenge sind offen.
- Es sei eine beliebige Indexmenge und seien
, , offene Mengen. Dann ist auch die
Vereinigung
- Es sei eine endliche Indexmenge und seien
, , offene Mengen. Dann ist auch der
Durchschnitt
Es sei ein metrischer Raum und eine Teilmenge mit der induzierten Metrik. Zeige, dass die Inklusion stetig ist.
Es sei ein metrischer Raum und sei
eine stetige Funktion. Es sei ein Punkt mit Zeige, dass dann auch für alle aus einer offenen Ballumgebung von gilt.
Es sei ein metrischer Raum und seien reelle Zahlen. Es seien
und
stetige Abbildungen mit . Zeige, dass dann die Abbildung
ebenfalls stetig ist.
Zeige, dass eine reelle Quadrik, also eine durch ein reelles Polynom vom Grad zwei gegebene Nullstellenmenge (siehe die 43. Vorlesung), eine abgeschlossene Teilmenge des ist.
Wie sieht das für polynomiale Nullstellengebilde von höherem Grad aus?
Es seien metrische Räume und seien
Abbildungen. Es sei stetig in und es sei stetig in . Zeige, dass die Hintereinanderschaltung
Es sei ein metrischer Raum und eine nichtleere Teilmenge. Zeige, dass durch
eine wohldefinierte, stetige Funktion gegeben ist.
Es sei ein metrischer Raum und sei eine Folge in . Zeige, dass die Folge in genau dann im Sinne der Metrik konvergiert, wenn sie im Sinne der Topologie konvergiert.
Es seien und topologische Räume und es sei
eine stetige Abbildung. Es sei kompakt. Zeige, dass das Bild ebenfalls kompakt ist.
Zeige, dass das offene Einheitsintervall und das abgeschlossene Einheitsintervall nicht homöomorph sind.
Es sei mit der euklidischen Metrik und mit der diskreten Metrik. Es sei
die Identität. Zeige, dass stetig ist, die Umkehrabbildung aber nicht.
Es sei eine nichtleere Menge versehen mit der diskreten Metrik. Zeige, dass eine stetige Abbildung
konstant ist.
Es sei oder . Es sei ein -dimensionaler affiner Unterraum, der den Nullpunkt nicht enthält, und es sei der dazu parallele Unterraum durch den Nullpunkt. Es sei eine in offene Menge (in der metrischen Topologie) und es sei die Vereinigung aller Geraden durch den Nullpunkt und durch einen Punkt von . Zeige, dass der Durchschnitt von mit offen ist.
- Aufgaben zum Abgeben
Aufgabe (2 Punkte)
Es sei ein Untervektorraum im euklidischen Raum . Zeige, dass abgeschlossen im ist.
Aufgabe (4 Punkte)
Aufgabe (4 Punkte)
Aufgabe (5 Punkte)
Im Nullpunkt befinde sich die Pupille eines Auges (oder eine Linse) und die durch bestimmte Ebene sei die Netzhaut (oder eine Fotoplatte). Bestimme die Abbildung
die das Sehen (oder Fotografieren) beschreibt (d.h. einem Punkt des Halbraumes wird durch den Lichtstrahl ein Punkt der Netzhaut zugeordnet). Ist diese Abbildung stetig, ist sie linear?
<< | Kurs:Lineare Algebra (Osnabrück 2017-2018)/Teil II | >> |
---|