Kurs:Mathematik (Osnabrück 2009-2011)/Teil I/Arbeitsblatt 12



Aufwärmaufgaben

Aufgabe

Es sei ein Körper, und seien - Vektorräume und

sei eine - lineare Abbildung. Zeige, dass für beliebige Vektoren und Koeffizienten die Beziehung

gilt.


Aufgabe

Es sei ein Körper und ein - Vektorraum. Zeige, dass zu die Abbildung

linear ist.[1]


Aufgabe

Es sei ein Körper und ein - Vektorraum. Zeige, dass zu die Abbildung

linear ist.


Aufgabe

Es sei ein Körper und ein - Vektorraum. Es sei versehen mit der Vektorraumstruktur des Produktraumes (siehe Aufgabe 10.1). Betrachte die Skalarmultiplikation

Handelt es sich hierbei um eine lineare Abbildung?


Aufgabe

Ergänze den Beweis zu Satz 12.3 um die Verträglichkeit mit der skalaren Multiplikation.


Aufgabe *

Es sei ein Körper und seien Vektorräume über . Es seien

lineare Abbildungen. Zeige, dass dann auch die Verknüpfung

eine lineare Abbildung ist.


Aufgabe *

Es sei ein Körper, und seien - Vektorräume und

sei eine - lineare Abbildung. Zeige, dass die folgenden Aussagen gelten.

  1. Für einen Untervektorraum ist auch das Bild ein Untervektorraum von .
  2. Insbesondere ist das Bild der Abbildung ein Untervektorraum von .
  3. Für einen Unterraum ist das Urbild ein Untervektorraum von .
  4. Insbesondere ist ein Untervektorraum von .


Aufgabe

Wie sieht der Graph einer linearen Abbildung

aus? Wie sieht man in einer Skizze des Graphen den Kern der Abbildung?


Aufgabe

Zeige, dass die Abbildungen

und

-lineare Abbildungen sind. Zeige ferner, dass die komplexe Konjugation -linear, aber nicht -linear ist. Ist der Betrag

-linear?


Aufgabe *

Es sei ein Körper und es seien und endlichdimensionale - Vektorräume. Zeige, dass und genau dann zueinander isomorph sind, wenn ihre Dimension übereinstimmt.


Aufgabe

Es sei ein Körper. Zu seien - Vektorräume und sowie lineare Abbildungen

gegeben. Zeige, dass dann auch die Produktabbildung

eine lineare Abbildung zwischen den Produkträumen ist.


Aufgabe *

Es sei ein Körper und es seien und zwei - Vektorräume. Es sei

eine bijektive lineare Abbildung. Zeige, dass dann auch die Umkehrabbildung

linear ist.


Aufgabe

Zeige durch ein Beispiel von zwei Basen und im , dass die Koordinatenfunktion von der Basis und nicht nur von abhängt.




Aufgaben zum Abgeben

Aufgabe (2 Punkte)

Es sei ein Körper und es seien und Vektorräume über . Zeige, dass der Homomorphismenraum

ein -Vektorraum ist.


Aufgabe (3 Punkte)

Es sei ein Körper und ein - Vektorraum. Es sei eine Familie von Vektoren in . Zeige, dass für die Abbildung

die folgenden Beziehungen gelten.

  1. ist injektiv genau dann, wenn linear unabhängig sind.
  2. ist surjektiv genau dann, wenn ein Erzeugendensystem von ist.
  3. ist bijektiv genau dann, wenn eine Basis ist.


Aufgabe (3 Punkte)

Es sei ein Körper, und seien - Vektorräume und

sei eine - lineare Abbildung. Zeige, dass der Graph der Abbildung ein Untervektorraum des Produktraumes ist.


Aufgabe (3 Punkte)

Auf dem reellen Vektorraum

der Glühweine betrachten wir die beiden linearen Abbildungen

und

Wir stellen uns als Preisfunktion und als Kalorienfunktion vor. Man bestimme Basen für , für und für .[2]


Aufgabe (2 Punkte)

Betrachte die Abbildung

die eine rationale Zahl auf schickt und die alle irrationalen Zahlen auf schickt. Ist dies eine lineare Abbildung? Ist sie mit Skalierung verträglich?


Die nächste Aufgabe verwendet die folgende Definition.

Seien und Gruppen. Eine Abbildung

heißt Gruppenhomomorphismus, wenn die Gleichheit

für alle gilt.


Aufgabe (4 Punkte)

Seien und -Vektorräume und sei

ein Gruppenhomomorphismus. Zeige, dass bereits - linear ist.




Fußnoten
  1. Eine solche Abbildung heißt Homothetie oder Streckung mit dem Streckungsfaktor .
  2. Man störe sich nicht daran, dass hier negative Zahlen vorkommen können. In einem trinkbaren Glühwein kommen natürlich die Zutaten nicht mit einem negativen Koeffizienten vor. Wenn man sich aber beispielsweise überlegen möchte, auf wie viele Arten man eine bestimmte Rezeptur ändern kann, ohne dass sich der Gesamtpreis oder die Energiemenge ändert, so ergeben auch negative Einträge einen Sinn.



<< | Kurs:Mathematik (Osnabrück 2009-2011)/Teil I | >>

PDF-Version dieses Arbeitsblattes

Zur Vorlesung (PDF)