Kurs:Mathematik (Osnabrück 2009-2011)/Teil I/Arbeitsblatt 26
- Aufwärmaufgaben
Es sei ein metrischer Raum und sei eine Folge in , die gegen konvergiert. Es sei eine Menge und es seien
die zu gehörenden konstanten Funktionen. Zeige, dass die Funktionenfolge gleichmäßig gegen die konstante Funktion
konvergiert.
Es sei eine endliche Menge und
eine Abbildungsfolge in einen metrischen Raum . Zeige, dass diese Folge genau dann punktweise konvergiert, wenn sie gleichmäßig konvergiert.
Es sei eine Menge und seien
und
zwei gleichmäßig konvergente Funktionenfolgen. Zeige, dass auch die Summenfolge
gleichmäßig konvergent ist.
Es sei eine konvergente Folge in . Wir betrachten auf einem reellen Intervall die Funktionenfolge
Zeige, dass diese Funktionenfolge gleichmäßig konvergiert, und bestimme die Grenzfunktion.
Es sei eine konvergente Folge in . Wir betrachten die Funktionenfolge
Zeige, dass diese Funktionenfolge punktweise, aber im Allgemeinen nicht gleichmäßig konvergiert. Was ist die Grenzfunktion?
Zu betrachten wir die Funktionen
die durch
definiert sind. Zeige, dass diese Funktionen stetig sind, und dass diese Funktionenfolge punktweise, aber nicht gleichmäßig gegen die Nullfunktion konvergiert.
Es sei eine Menge und
die Menge der beschränkten komplexwertigen Funktionen auf . Zeige, dass ein komplexer Vektorraum ist.
Es sei eine Folge von komplexen Zahlen und die zugehörige Potenzreihe. Zeige, dass deren Konvergenzradius mit dem Konvergenzradius der um „verschobenen“ Potenzreihe
übereinstimmt.
Zeige, dass die Exponentialreihe auf nicht gleichmäßig konvergiert.
Es sei eine positive reelle Zahl. Zeige für jedes die Gleichheit
- Aufgaben zum Abgeben
Aufgabe (4 Punkte)
Betrachte die Funktionenfolge
Zeige, dass diese Folge für punktweise konvergiert, und untersuche die Folge auf gleichmäßige Konvergenz für die verschiedenen Definitionsmengen
Aufgabe (4 Punkte)
Betrachte die Potenzreihe
Zeige, dass diese Potenzreihe den Konvergenzradius besitzt, und dass die Reihe noch für alle , , konvergiert.
Aufgabe (6 Punkte)
Es sei ein metrischer Raum und eine Teilmenge. Es sei und
eine Folge von stetigen Funktionen. Zeige, dass diese Folge genau dann gleichmäßig konvergiert, wenn die auf eingeschränkte Folge gleichmäßig konvergiert.
Aufgabe (4 Punkte)
Es sei eine Menge und
die Menge der beschränkten komplexwertigen Funktionen auf . Zeige, dass die Supremumsnorm auf folgende Eigenschaften erfüllt.
- für alle .
- genau dann, wenn ist.
- Für und gilt
- Für gilt
Aufgabe (5 Punkte)
Es sei
eine Potenzreihe, die für ein auf konvergiere und dort die Nullfunktion darstelle. Zeige, dass dann für alle ist (d.h. die Potenzreihe ist die Nullreihe).
Aufgabe (3 Punkte)
Bestimme die Koeffizienten der Exponentialreihe im Entwicklungspunkt .
<< | Kurs:Mathematik (Osnabrück 2009-2011)/Teil I | >> |
---|