Kurs:Mathematik für Anwender/Teil II/1/Klausur mit Lösungen


Aufgabe 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
Punkte 3 3 5 1 6 8 2 4 5 4 4 6 4 5 4 64




Aufgabe (3 Punkte)

Definiere die folgenden (kursiv gedruckten) Begriffe.

  1. Die Abstandsfunktion auf einem reellen Vektorraum mit einem Skalarprodukt .
  2. Die Konvergenz einer Folge in einem metrischen Raum .
  3. Ein Anfangswertproblem in einem endlichdimensionalen reellen Vektorraum .
  4. Ein homogenes lineares Differentialgleichungssystem mit konstanten Koeffizienten.
  5. Ein kritischer Punkt einer differenzierbaren Funktion .
  6. Der Schwerpunkt zu einer stetigen Massenverteilung

    auf einer kompakten Teilmenge mit positivem Gesamtvolumen.


Lösung

  1. Zu zwei Vektoren nennt man

    den Abstand zwischen und .

  2. Man sagt, dass die Folge konvergiert, wenn es ein gibt, das folgende Eigenschaft erfüllt: Zu jedem , , gibt es ein derart, dass für alle die Beziehung

    gilt.

  3. Es sei ein reelles Intervall, eine offene Menge und

    ein Vektorfeld auf . Es sei gegeben. Dann nennt man

    das Anfangswertproblem zur gewöhnlichen Differentialgleichung mit der Anfangsbedingung .

  4. Ein homogenes lineares gewöhnliches Differentialgleichungssystem mit konstanten Koeffizienten ist eine Differentialgleichung der Form

    wobei

    eine Matrix mit Einträgen ist.

  5. Zur differenzierbaren Funktion

    heißt ein kritischer Punkt, wenn

    ist.

  6. Der Schwerpunkt von ist der Punkt mit den Koordinaten


Aufgabe (3 Punkte)

Formuliere die folgenden Sätze.

  1. Das Lösungsverfahren für homogene lineare gewöhnliche Differentialgleichungen.
  2. Die Mittelwertabschätzung für eine differenzierbare Kurve
  3. Der Satz über stetige partielle Ableitungen und totale Differenzierbarkeit für eine Funktion .


Lösung

  1. Es sei

    eine homogene lineare gewöhnliche Differentialgleichung mit einer stetigen Funktion

    die auf einem Intervall definiert sei. Es sei eine Stammfunktion zu auf . Dann sind die Lösungen der Differentialgleichung gleich

  2. Es gibt ein mit
  3. Wenn alle partiellen Ableitungen von existieren und stetig sind, so ist total differenzierbar.


Aufgabe (5 (4+1) Punkte)

a) Finde alle Lösungen der inhomogenen linearen Differentialgleichung

für .

b) Löse das Anfangswertproblem


Lösung

a) Wir berechnen zuerst die Lösungen der zugehörigen homogenen linearen Differentialgleichung

Eine Stammfunktion zu ist . Daher sind (mit )

die Lösungen der homogenen Gleichung.

Zur Bestimmung einer Lösung der inhomogenen Gleichung müssen wir eine Stammfunktion zu

bestimmen. Eine solche ist . Somit sind die Lösungen der inhomogenen Differentialgleichung gleich

b) Zur Lösung des Anfangswertproblems müssen wir das aus Teil a) bestimmen. Die Anfangsbedingung führt auf

also ist und

ist die Lösung des Anfangswertproblems.


Aufgabe (1 Punkt)

Bestimme das orthogonale Komplement zu dem von erzeugten Untervektorraum im .


Lösung

Die Vektoren und stehen offenbar senkrecht auf der gegebenen Geraden und sind zueinander linear unabhängig. Daher und aus Dimensionsgründen ist der Orthonormalraum gleich


Aufgabe (6 Punkte)

Beweise den Satz über die Stetigkeit linearer Abbildungen.


Lösung

Eine komplex-lineare Abbildung ist auch reell-linear, und die euklidische Metrik hängt nur von der reellen Struktur ab. Wir können also annehmen. Aufgrund von [[Stetigkeit/K/Metrischer_Raum/Funktionen_und_Produktraum/Fakt|Kurs:Mathematik für Anwender (Osnabrück 2023-2024)/Stetigkeit/K/Metrischer Raum/Funktionen und Produktraum/Fakt/Faktreferenznummer (Mathematik für Anwender (Osnabrück 2023-2024))]] können wir annehmen. Die Abbildung sei durch

mit gegeben. Die Nullabbildung ist konstant und daher stetig, also sei . Es sei und ein vorgegeben. Für alle mit ist insbesondere für alle und daher ist


Aufgabe (8 (4+4) Punkte)

Wir betrachten die reelle Ebene ohne den offenen Kreis mit Mittelpunkt und Radius , also

Eine Person befindet sich im Punkt und möchte zum Punkt , wobei sie sich nur in bewegen darf.

a) Zeige, dass die Person von nach entlang von zwei geraden Strecken kommen kann, deren Gesamtlänge ist.

b) Zeige, dass die Person von nach entlang eines stetigen Weges kommen kann, dessen Gesamtlänge maximal ist.


Lösung

a) Wir betrachten die (obere) Tangente an den Kreis durch . Es sei der Schnittpunkt des Kreises mit dieser Tangente. Diese steht senkrecht auf dem Ortsvektor zu . Nach dem Satz des Pythagoras, angewendet auf das rechtwinklige Dreieck , besitzt die Verbindungsstrecke von nach die Länge . Es sei der Schnittpunkt der Tangente mit der -Achse. Wir betrachten das (rechtwinklige) Dreieck . Der Winkel dieses Dreiecks an stimmt mit dem Winkel des zuerst betrachteten Dreiecks an überein. Daher sind die beiden Dreiecke ähnlich (d.h. es gelten die gleichen Längenverhältnisse) und daher besteht, wenn die Länge von nach bezeichnet, die Beziehung

Also ist . Daher ist die Strecke von nach gleich

Man kann also auf dieser Tangente von nach und von dort mit der gespiegelten Tangente von nach gelangen und legt dabei einen Weg der Länge zurück.

b) Die Person bewegt sich nun von nach längs der Tangenten, folgt dann dem Kreis bis zu dem gegenüberliegenden Punkt und läuft dann längs der gespiegelten Tangenten von nach . Dieser Weg ist offenbar stetig. Es sei der Winkel des Dreiecks an . In diesem rechtwinkligen Dreieck besteht die Beziehung („Gegenkathete durch Hypotenuse“)

Daher ist im Bogenmaß. Wie unter a) bemerkt, tritt dieser Winkel auch im Dreieck an auf und beschreibt daher den Winkel, der den zugehörigen Kreisbogen bestimmt, entlang dem sich die Person bewegt. Da der Radius ist, ist der zugehörige Bogen maximal gleich

Daher ist die Gesamtlänge dieses Weges gleich


Aufgabe (2 Punkte)

Bestimme die Ableitung der Kurve

in jedem Punkt .


Lösung

Die Ableitung rechnet man komponentenweise aus, sie ist


Aufgabe (4 Punkte)

Bestimme die Lösung des Anfangswertproblems für das Zentralfeld

mit .


Lösung

Es handelt sich um ein Zentralfeld, das auf die eindimensionale Differentialgleichung

mit führt. Dies ist eine Differentialgleichung mit getrennten Variablen. Es ist

und somit

Also ist

und wegen der Anfangsbedingung muss sein, also ist

Die Lösung für das Zentralfeld ist somit


Aufgabe (5 Punkte)

Löse das Anfangswertproblem

durch einen Potenzreihenansatz bis zur Ordnung .


Lösung

Wir machen den Potenzreihenansatz und . Aufgrund der Anfangsbedingung ist

Das Differentialgleichungssystem führt auf die beiden Potenreihengleichungen

und

die wir gradweise auswerten. Für den Grad (der Potenzreihengleichungen) ergeben sich daraus die beiden Gleichungen

Für den Grad ergeben sich daraus die beiden Gleichungen

also ist und . Für den Grad ergeben sich daraus die beiden Gleichungen

also ist und . Für den Grad ergeben sich daraus die beiden Gleichungen

also ist und . Die Taylor-Entwicklung der Lösungskurve bis zur Ordnung ist demnach


Aufgabe (4 Punkte)

Es sei eine Bilinearform auf einem zweidimensionalen reellen Vektorraum, die bezüglich einer Basis durch die Gramsche Matrix

beschrieben werde. Bestimme den Typ der Form in Abhängigkeit von .


Lösung

Wir verwenden das Eigenwertkriterium. Das charakteristische Polynom der Matrix ist

Bei ist der Wert des charakteristischen Polynoms an der Stelle negativ. Somit gibt es eine negative und eine positive Nullstelle und daher ist der Typ gleich . Es sei also . Die Nullstellen des charakteristischen Polynoms sind dann und . Bei liegt die Nullform mit dem Typ vor. Bei negativem ist der Typ und bei positivem ist der Typ .


Aufgabe (4 Punkte)

Bestätige die Kettenregel für für die beiden differenzierbaren Abbildungen

und


Lösung

Die zusammengesetzte Abbildung ist durch

gegeben, ihre Ableitung ist

Die Jacobi-Matrix zu ist

und die Jacobi-Matrix zu ist

Daher ist die Jacobi-Matrix zu in einem Punkt gleich

Das zu bildende Matrixprodukt dieser beiden Matrizen ist

Dies stimmt natürlich mit der direkt bestimmten Ableitung überein.


Aufgabe (6 (4+1+1) Punkte)

Es sei

eine stetig differenzierbare Funktion mit

für alle .

a) Zeige, dass in einen kritischen Punkt besitzt.

b) Man gebe ein Beispiel für eine solche Funktion, die in ein isoliertes lokales Maximum besitzt.

c) Man gebe ein Beispiel für eine solche Funktion, die in kein Extremum besitzt.


Lösung

a) Wir zeigen, dass im Nullpunkt sämtliche Richtungsableitungen verschwinden. Dazu sei , und die zugehörige Gerade durch den Nullpunkt. Die Richtungsableitung in Richtung kann man allein auf dieser Geraden bestimmen. Mit ist auch . Die Voraussetzung überträgt sich also auf die Gerade und wir können annehmen, dass eine differenzierbare Funktion

mit der gegebenen Symmetrieeigenschaft vorliegt. Nach der eindimensionalen Kettenregel ist

Für ist somit

und daher ist

b) Sei

Diese Funktion hat überall negative Werte und nur im Nullpunkt den Wert , es liegt also ein isoliertes globales Maximum vor. Offenbar ist .

c) Sei

Diese Funktion hat auf der durch gegebenen Diagonalen ein isoliertes Minimum und auf der durch gegebenen Nebendiagonalen ein isoliertes Maximum. Insgesamt liegt also kein Extremum vor. Auch hier ist .


Aufgabe (4 Punkte)

Bestimme das Taylor-Polynom zweiter Ordnung der Funktion

im Punkt .


Lösung

Die relevanten Ableitungen sind

Somit sind die Werte der relevanten Ableitungen im Punkt gleich

Daher ist das Taylor-Polynom der Ordnung zwei gleich


Aufgabe (5 (2+1+2) Punkte)

Wir betrachten die Abbildung

a) Bestimme die Jacobi-Matrix zu dieser Abbildung.

b) Zeige, dass im Nullpunkt nicht regulär ist.

c) Zeige, dass in regulär ist.


Lösung

a) Die Jacobi-Matrix ist

b) Die Jacobi-Matrix im Nullpunkt ist

Diese Matrix hat den Rang , so dass der Nullpunkt nicht regulär ist.

c) Die Jacobi-Matrix in ist

Die Determinante der vorderen -Untermatrix ist , so dass die ersten vier Spaltenvektoren linear unabhängig sind und daher der Rang der Matrix gleich ist. Daher handelt es sich um einen regulären Punkt.


Aufgabe (4 Punkte)

Beweise den Satz über die Additivität des Volumens für zwei disjunkte Teilmengen.


Lösung

Die Abschätzung folgt aus [[R^n/Kompakte Teilmenge/Volumen/Monotonie und endliche Vereinigung/Fakt|Kurs:Mathematik für Anwender (Osnabrück 2023-2024)/R^n/Kompakte Teilmenge/Volumen/Monotonie und endliche Vereinigung/Fakt/Faktreferenznummer (Mathematik für Anwender (Osnabrück 2023-2024))  (2)]].

Für die andere Abschätzung sei eine Überpflasterung von gegeben. Aufgrund der Disjunktheit und der Kompaktheit gibt es einen positiven Abstand zwischen den beiden Mengen, d.h. es gibt ein derart, dass für alle , , ist. Einen Quader aus der Überpflasterung, der beide Teilmengen schneidet, kann man dann in endlich viele Quader unterteilen, so dass diese zu (mindestens) einer der beiden Mengen disjunkt sind. So erreicht man eine Verfeinerung der Überpflasterung mit der gleichen Quadervolumensumme, deren Quader jeweils nur eine Teilmenge treffen. Daher ist die Volumensumme dieser Überpflasterung gleich der Summe der Volumensumme der beiden Teilüberpflasterungen und damit mindestens so groß wie .