Kurs:Lineare Algebra (Osnabrück 2015-2016)/Teil I/Arbeitsblatt 13/kontrolle



Die Pausenaufgabe

Bestimme für einen Körper die idempotenten Elemente, also Elemente mit . Bestimme die linearen Projektionen .




Übungsaufgaben

Es sei eine lineare Projektion auf einem endlichdimensionalen - Vektorraum . Zeige, dass bezüglich einer geeigneten Basis von durch eine Matrix der Form

beschrieben wird.



Wir betrachten die Basis

im und es sei die Projektion von auf

bezüglich dieser Basis. Bestimme die Matrix zu bezüglich der Standardbasis.



Es sei der Lösungsraum zur linearen Gleichung

und . Zeige

und beschreibe die Projektionen auf und auf bezüglich der Standardbasis.



Zeige, dass die Summe von zwei linearen Projektionen

im Allgemeinen keine Projektion ist.



Vereinfache den Beweis zu Lemma 13.5 mit Hilfe der Dimensionsformel.



Bestimme die Spur zu einer linearen Projektion

auf einem endlichdimensionalen - Vektorraum .



Aufgabe Aufgabe 13.8 ändern

Es sei ein Körper und es seien und Vektorräume über . Zeige, dass der Homomorphismenraum

ein -Vektorraum ist.



Es sei ein Körper und es seien und Vektorräume über . Zeige, dass der Homomorphismenraum

ein -Untervektorraum des Abbildungsraumes ist.



Aufgabe Aufgabe 13.10 ändern

Es sei ein - Vektorraum über dem Körper . Zeige, dass die Abbildung

ein Isomorphismus von Vektorräumen ist.



Es sei ein Körper und es seien und Vektorräume über . Es sei der - Vektorraum der linearen Abbildungen von nach und es sei ein fixierter Vektor. Zeige, dass die Abbildung

-linear ist.



Es sei ein Körper, und seien endlichdimensionale -Vektorräume und sei

eine lineare Abbildung.


a) Zeige: ist genau dann surjektiv, wenn es eine lineare Abbildung

mit

gibt.


b) Es sei nun surjektiv, es sei

und es sei fixiert. Definiere eine Bijektion zwischen und , unter der auf abgebildet wird.



Es sei ein Körper und sei eine - Matrix über . Zeige, dass die ersten Potenzen[1]

linear abhängig in sind.



Aufgabe Aufgabe 13.14 ändern

Es sei ein Körper und es seien und Vektorräume über . Zeige die folgenden Aussagen.

  1. Eine lineare Abbildung

    mit einem weiteren Vektorraum induziert eine lineare Abbildung

  2. Eine lineare Abbildung

    mit einem weiteren Vektorraum induziert eine lineare Abbildung



Formuliere Lemma 13.8 mit Matrizen bezüglich gegebener Basen.



Es sei ein Körper und ein - Vektorraum. Zeige, dass

mit der Addition und der Hintereinanderschaltung von Abbildungen ein Ring ist.

Den Ring der vorstehenden Aufgabe nennt man Endomorphismenring zu .


Es sei ein - Vektorraum und

ein Isomorphismus. Zeige, dass die Abbildung

ein Vektorraum-Isomorphismus ist und dass darüber hinaus

und

gilt.



Es sei ein - Vektorraum und eine Basis von . Bestimme die Dimension des Raumes der Endomorphismen

mit

für alle . Wie sehen die Matrizen zu einem solchen bezüglich dieser Basis aus?



Es sei ein - Vektorraum und es seien

Automorphismen derart, dass für jeden Untervektorraum die Gleichheit gilt. Zeige, dass mit einem ist.




Aufgaben zum Abgeben

Wir betrachten die Basis

im und es sei die Projektion von auf bezüglich dieser Basis. Bestimme die Matrix zu bezüglich der Standardbasis.



a) Zeige, dass die - Matrizen

Projektionen beschreiben. Dabei sind derart, dass eine Quadratwurzel existiert.

b) Bestimme sämtliche -Matrizen

die eine Projektion beschreiben.



Es seien und endlichdimensionale - Vektorräume und . Zeige



Es seien und jeweils verschiedene Geraden im . Welche Dimension hat der Raum




Fußnoten
  1. Wir werden später eine deutlich stärkere Aussage kennenlernen.


<< | Kurs:Lineare Algebra (Osnabrück 2015-2016)/Teil I | >>

PDF-Version dieses Arbeitsblattes

Zur Vorlesung (PDF)