Kurs:Analysis (Osnabrück 2021-2023)/Teil II/Vorlesung 57



Zur Eindeutigkeit der Lösungen von Differentialgleichungen



Satz  

Es sei ein endlichdimensionaler reeller Vektorraum, ein reelles Intervall, eine offene Menge und

ein stetiges Vektorfeld auf das lokal einer Lipschitz-Bedingung genügt. Es sei ein offenes Teilintervall und es seien

Lösungen des Anfangswertproblems

Dann ist .

Beweis  

Wir betrachten die Menge

Wegen ist diese Menge nicht leer. Zu jedem Punkt gibt es nach Satz 56.2 eine offene Intervallumgebung , worauf es zu gegebener Anfangsbedingung genau eine Lösung der Differentialgleichung gibt. Wenn ist, so ist und daher stimmen und in einer offenen Umgebung mit der eindeutigen Lösung und damit untereinander überein. Also ist . Dies bedeutet, dass eine offene Teilmenge von ist.
Andererseits sind und stetig und daher ist nach Aufgabe 34.15 die Menge auch abgeschlossen in .
Da ein Intervall nach Satz 35.9 zusammenhängend ist, folgt .


Das folgende Beispiel zeigt, dass ohne die Lipschitz-Bedingung die Lösung eines Anfangswertproblems nicht eindeutig bestimmt ist. In diesem Beispiel ist das Vektorfeld nach ableitbar, die Ableitung ist aber nicht stetig, so dass Lemma 55.4 nicht anwendbar ist.


Beispiel  

Wir betrachten das Anfangswertproblem

zum zeitunabhängigen Vektorfeld

Offensichtlich gibt es die stationäre Lösung

aber auch

ist eine Lösung, wie man durch Nachrechnen sofort bestätigt. Aus diesen beiden Lösungen kann man sich noch weitere Lösungen basteln. Es seien dazu reelle Zahlen. Dann ist auch

eine Lösung. D.h. es gibt Lösungen, bei denen das Teilchen beliebig lange (im Zeitintervall von nach ) ruht und danach (und davor) sich bewegt. Sobald sich das Teilchen in einem Punkt befindet, ist der Bewegungsablauf lokal eindeutig bestimmt.


Bemerkung  

Zu einem stetigen Vektorfeld

kann man sich fragen, ob es ein maximales Definitionsintervall für die Lösung eines Anfangswertproblems

gibt. Dies ist in der Tat der Fall, wenn das Vektorfeld lokal einer Lipschitz-Bedingung genügt! Man kann nämlich alle Teilmengen

betrachten. Wegen Satz 57.1 stimmen zwei Lösungen und auf dem Durchschnitt überein, und liefern daher eine eindeutige Lösung auf der Vereinigung . Daher enthält die Menge der Teilintervalle, auf denen eine Lösung definiert ist, ein maximales Teilintervall .

Dieses Teilintervall kann kleiner als sein. Die Grenzen des maximalen Teilintervalls, auf dem eine Lösung definiert ist, heißen auch Entweichzeiten.

Ein Beispiel für ein solches Verhalten hatten wir schon in Analysis 1 kennengelernt, siehe Beispiel 30.7.



Gradientenfelder



Definition  

Es sei ein euklidischer Vektorraum, offen und

eine differenzierbare Funktion. Dann nennt man die Abbildung

das zugehörige Gradientenfeld.

Ein Gradientenfeld ist also ein zeitunabhängiges Vektorfeld. Man spricht auch von einem Potentialfeld, die Funktion (manchmal ) heißt dann ein Potential des Vektorfeldes. Wenn zweimal stetig differenzierbar ist, so genügt nach Lemma 55.4 das zugehörige Gradientenfeld lokal einer Lipschitz-Bedingung.

Die folgende Aussage zeigt, dass die Lösungskurven der zugehörigen Differentialgleichung senkrecht auf den Fasern von liegen. Die Fasern beschreiben, wo das Potential (oder die Höhenfunktion) konstant ist, die Lösungen beschreiben nach Satz 47.8 den Weg des steilsten Anstiegs. Wenn beispielsweise die Höhenfunktion eines Gebirges ist, so gibt das Gradientenfeld in jedem Punkt den steilsten Anstieg an und die Trajektorie einer Lösungskurve beschreibt den Verlauf eines Baches (wir behaupten nicht, dass die Bewegung eines Wassermoleküls im Bach durch diese Differentialgleichung bestimmt ist, sondern lediglich, dass der zurückgelegte Weg, also das Bild der Kurve, mit dem Bild der Lösungskurve übereinstimmt). Der Bach verläuft immer senkrecht zu den Höhenlinien.


Lemma  

Es sei ein euklidischer Vektorraum, offen,

eine differenzierbare Funktion und

das zugehörige Gradientenfeld. Es sei

eine Lösung der Differentialgleichung

Dann steht senkrecht auf dem Tangentialraum der Faser von durch für , für die reguläre Punkte von sind.

Beweis  

Sei ein regulärer Punkt von und sei ein Vektor aus dem Tangentialraum. Dann gilt direkt



Beispiel  

Wir betrachten die Produktabbildung

Das zugehörige Gradientenfeld ist

Die Fasern von sind das Achsenkreuz (die Faser über ) und die durch , , gegebenen Hyperbeln. Die Lösungen der linearen Differentialgleichung

sind von der Form

mit beliebigen , wie man direkt nachrechnet und was sich auch aus Lemma 42.1 bzw. Aufgabe 42.11 ergibt. Dabei ist . Für ist dies die stationäre Lösung im Nullpunkt, in dem die Produktabbildung nicht regulär ist. Bei ist , das Bild dieser Lösung ist die obere Halbdiagonale (ohne den Nullpunkt), bei ist , das Bild dieser Lösung ist die untere Halbdiagonale, bei und ist , das Bild dieser Lösung ist die untere Hälfte der Nebendiagonalen, bei und ist , das Bild dieser Lösung ist die obere Hälfte der Nebendiagonalen.

Ansonsten treffen die Lösungskurven das Achsenkreuz in einem Punkt . Wenn man diesen Punkt als Anfangswert zum Zeitpunkt nimmt, so kann man die Lösungskurven als

(zum Zeitpunkt befindet sich die Lösung auf der Achse im Punkt ),

und als

(zum Zeitpunkt befindet sich die Lösung auf der Achse im Punkt ) realisieren. Die Bahnen dieser Lösungen erfüllen die Gleichung bzw. , d.h. sie sind selbst Hyperbeln.


Bemerkung  

Jedes stetige zeitunabhängige eindimensionale Vektorfeld ist ein Gradientenfeld. Ein solches Vektorfeld ist ja durch eine Funktion

auf einem offenen Intervall gegeben. Mit einer Stammfunktion

zu kann man

schreiben. Für einen regulären Punkt zu ist das totale Differential injektiv und daher ist der Tangentialraum an der Faser der Nullraum. In diesem Fall ist also Lemma 57.5 ohne Relevanz.




Wegintegrale und Gradientenfelder



Lemma  

Es sei eine offene Teilmenge und

eine stetig differenzierbare Funktion mit dem zugehörigen Gradientenfeld . Es sei ein stetig differenzierbarer Weg in .

Dann gilt für das Wegintegral

D.h. das Wegintegral hängt nur vom Anfangs- und Endpunkt des Weges ab.[1]

Beweis  

Aufgrund der Kettenregel ist



Korollar  

Es sei eine offene Teilmenge und

eine differenzierbare Funktion mit dem zugehörigen Gradientenfeld . Es sei ein stetig differenzierbarer Weg mit .

Dann ist

Beweis  

Dies folgt direkt aus Lemma 57.8.



Satz  

Es sei eine offene zusammenhängende Teilmenge und

ein stetiges Vektorfeld. Dann sind die folgenden Eigenschaften äquivalent.

  1. ist ein Gradientenfeld.
  2. Für jeden stetig differenzierbaren Weg hängt das Wegintegral nur vom Anfangspunkt und Endpunkt ab.

Beweis  

Die Implikation folgt aus Lemma 57.8.
Es sei umgekehrt die Eigenschaft erfüllt. Wir geben eine auf definierte Funktion an, die differenzierbar ist und deren Gradientenfeld gleich dem vorgegebenen Vektorfeld ist. Dazu sei ein Punkt fixiert. Für jeden Punkt gibt es einen stetig differenzierbaren Weg[2]

mit und . Wir setzen

Aufgrund der vorausgesetzten Wegunabhängigkeit des Integrals ist wohldefiniert. Wir müssen zeigen, dass diese so definierte Funktion in jedem Punkt und in jede Richtung differenzierbar ist und die Richtungsableitung mit übereinstimmt. Dazu betrachten wir

wobei der verbindende lineare Weg von nach auf sei (und hinreichend klein sei, so dass ist). Für den Differentialquotienten ist

Somit existiert die Richtungsableitung von in Richtung und hängt stetig von ab. Diese Gleichung zeigt ferner

so dass das Gradientenfeld zu ist.



Fußnoten
  1. In einem Potentialfeld ist also die geleistete Arbeit gleich der Potentialdifferenz von Start- und Endpunkt.
  2. Aus der Existenz eines verbindenden stetigen Weges folgt die Existenz eines verbindenden stetig differenzierbaren Weges. Man könnte also auch diese Eigenschaft als Definition für zusammenhängend nehmen.


<< | Kurs:Analysis (Osnabrück 2021-2023)/Teil II | >>

PDF-Version dieser Vorlesung

Arbeitsblatt zur Vorlesung (PDF)