Kurs:Funktionentheorie (Osnabrück 2023-2024)/Vorlesung 20/kontrolle



Homotopie von Wegen

Wir haben schon öfters gezeigt, dass gewisse Wegintegrale zu einer Differentialform gleich sind (Korollar 12.12, Satz 13.1, Satz 13.3) bzw. gezeigt, dass man bei der Bestimmung von Wegintegralen Wege durch andere Wege ersetzen kann, wie beispielsweise in Korollar 13.5. Um diese Ergebnisse besser verstehen und erweitern zu können, ist es nötig, zu untersuchen, welche Relation zwischen Wegen garantiert, dass die zugehörigen Wegeintegrale (zu beliebigen holomorphen Differentialformen) übereinstimmen. Es wird sich herausstellen, dass hier eine rein topologische Relation, die Homotopie, entscheidend ist. Die beiden folgenden Vorlesungen werden daher rein topologisch sein und sich mit der Homotopie von Wegen, der Fundamentalgruppe und Überlagerungen beschäftigen. Anschließend können wir wichtige funktionentheoretische Sätze wie Satz 22.3, Korollar 22.4 (Homotopieprinzip) und den Residuensatz beweisen.


Es sei und seien stetige Wege in einen topologischen Raum mit der Eigenschaft, dass und gilt. Eine Homotopie relativ zu zwischen und ist eine stetige Abbildung

die die folgenden Eigenschaften erfüllt.

  1. für alle .
  2. für alle .
  3. für alle .
  4. für alle .

Zwei Wege

heißen homotop, wenn es eine solche Homotopie zwischen ihnen gibt. Man schreibt für homotope Wege. Die Homotopie ist eine Äquivalenzrelation auf der Menge der stetigen Wege von nach , die zugehörigen Äquivalenzklassen heißen Homotopieklassen.

Zwei stetige Wege, für die der Endpunkt des ersten Weges mit dem Anfangspunkt des zweiten Weges übereinstimmt, kann man miteinander verknüpfen, indem man zuerst den ersten Weg und anschließend den zweiten Weg durchläuft. Man spricht von der Hintereinanderlegung von Wegen und schreibt einfach , wobei zuerst durchlaufen wird. Als Definitionsbereich erhält man dabei das Intervall . Man kann aber, indem man die beiden Wege doppelt so schnell durchläuft, auch das Einheitsintervall als Definitionsbereich wählen. Unter dem Rückweg zu versteht man den entgegengesetzt durchlaufenen Weg, man bezeichnet ihn mit .



Es sei ein topologischer Raum und seien Punkte. Dann gelten folgende Aussagen.

  1. Die Homotopie zwischen stetigen Wegen von nach mit als Anfangspunkt und als Endpunkt ist eine Äquivalenzrelation.
  2. Wenn und zueinander homotop sind, so sind auch die Rückwege und zueinander homotop.
  3. Wenn und homotope Wege von nach und und homotope Wege von nach sind, so sind auch die Verknüpfungen und homotop.
  4. Die Hintereinanderlegung ist zum konstanten Weg homotop.



Die Fundamentalgruppe

Es sei ein topologischer Raum, den wir als wegzusammenhängend voraussetzen wollen, zu je zwei Punkten gibt es also einen stetigen Weg

mit und . Ein Weg heißt geschlossen, wenn ist, wenn also der Startpunkt mit dem Endpunkt übereinstimmt. Dieser Punkt heißt dann auch Aufpunkt des Weges. Häufig betrachtet man stetige geschlossene Wege in als stetige Abbildungen .

Zu geschlossenen homotopen Wegen und sind auch die Verknüpfungen und zueinander homotop. Dies erlaubt eine Verknüpfung auf der Menge der Äquivalenzklassen von homotopen geschlossenen Wegen mit Aufpunkt , die die Fundamentalgruppe heißt.


Es sei ein topologischer Raum und ein Punkt. Unter der Fundamentalgruppe von mit Aufpunkt versteht man die Menge aller Homotopieklassen von stetigen geschlossenen Wege mit Anfangs- und Endpunkt mit der Hintereinanderlegung von Wegen als Verknüpfung.

Die Fundamentalgruppe der punktierten reellen Ebene ist , man spricht von der Windungszahl des Weges.


Diese Menge ist mit dem konstanten Weg (also der Homotopieklasse des konstanten Weges) als neutralem Element in der Tat eine Gruppe. Die Assoziativität ist dabei nicht völlig selbstverständlich, da drei geschlossene Weg je nach Klammerung zu unterschiedlichen Wegen auf dem Einheitsintervall führen. Die entstehenden Wege sind aber homotop, sodass auf den Homotopieklassen die Assoziativität gilt, siehe Aufgabe 20.10. Die inverse Homotopieklasse ist durch den entgegengesetzt durchlaufenen Weg gegeben. Deren Verknüpfung ist in der Tat homotop zum konstanten Weg, oder, wie man auch sagt, nullhomotop, siehe Aufgabe 20.8.



Es sei ein wegzusammenhängender topologischer Raum und seien Punkte.

Dann sind die Fundamentalgruppen und und zueinander isomorph.

Beweis

Siehe Aufgabe 20.13.

Man beachte, dass hierbei der Isomorphismus nicht kanonisch gegeben ist, sondern von der Wahl eines Verbindungsweges von nach abhängt. Die Aussage ist der Grund, dass man häufig einfach ohne einen expliziten Aufpunkt schreibt.



Kontrahierbare und einfach zusammenhängende Räume

Ein topologischer Raum heißt einfach zusammenhängend, wenn er wegzusammenhängend ist und wenn jeder stetige geschlossene Weg in nullhomotop ist.

Der einfache Zusammenhang bedeutet also, dass ist (für einen beliebigen Aufpunkt ).


Ein topologischer Raum heißt kontrahierbar (oder zusammenziehbar) auf einen Punkt , wenn es eine stetige Abbildung

derart gibt, dass die Eigenschaften

  1. ,
  2. ,
  3. für alle

gelten.

Beispielsweise ist der und jede sternförmige Menge im kontrahierbar und nach dem folgenden Satz auch einfach zusammenhängend.



Lemma  Lemma 20.7 ändern

Eine sternförmige Teilmenge

ist kontrahierbar.

Es sei sternförmig bezüglich des Punktes . Dann ist

eine Kontraktion von auf den Punkt .



Die Fundamentalgruppe eines kontrahierbaren Raumes

ist trivial.

Es sei

die Kontraktion des topologischen Raumes auf den Punkt und es sei

ein stetiger geschlossener Weg in mit Aufpunkt . Wir betrachten die zusammengesetzte Abbildung

und behaupten, dass dies eine Homotopie zwischen und dem konstanten Weg ergibt. Dies folgt aus

für alle ,

für alle ,

für alle und

für alle . Dies bedeutet, dass nullhomotop ist.


Ein kontrahierbarer Raum ist also einfach zusammenhängend.



Die Fundamentalgruppe als Funktor

Zu einer stetigen Abbildung

und einem Punkt mit induziert ein stetiger geschlossener Weg mit Aufpunkt einen stetigen geschlossenen Weg in mit Aufpunkt . Diese Zuordnung ist mit Homotopien von Wegen verträglich, d.h. wenn zwei homotope Wege in mit Aufpunkt sind, so sind auch und homotop, siehe Aufgabe 20.19. Daher gibt es eine wohldefinierte Abbildung

Diese Abbildung ist sogar ein Gruppenhomomorphismus.


Es sei eine stetige Abbildung zwischen topologischen Räumen und mit .

Dann definiert die Zuordnung

einen Gruppenhomomorphismus

Beweis

Siehe Aufgabe 20.20.


Dieser Homomorphismus wird mit bezeichnet.


Es seien topologische Räume, es seien und

stetige Abbildungen und mit und . Dann erfüllen die zugehörigen Gruppenhomomorphismen zwischen den Fundamentalgruppen die folgenden Eigenschaften.

  1. Es ist
  2. Wenn und invers zueinander sind (was voraussetzt), so sind und invers zueinander.
  3. Wenn ein Homöomorphismus ist, dann ist ein Isomorphismus.

Beweis

Siehe Aufgabe 20.27.



Deformationsretrakte

Ein Unterraum eines topologischen Raumes heißt Deformationsretrakt von , wenn es eine stetige Abbildung

gibt mit

für alle ,

für alle ,

für alle und alle .

Ein topologischer Raum ist genau dann kontrahierbar, wenn ein einzelner Punkt ein Deformationsretrakt des Gesamtraumes ist.


Beispiel  Beispiel 20.12 ändern

Wir betrachten den Kreis . Die Abbildung

ist stetig und zeigt, dass der Einheitskreis ein Deformationsretrakt der punktierten Ebene ist. Es ist ja

und für ist




Satz  Satz 20.13 ändern

Es sei ein Deformationsretrakt eines topologischen Raumes und .

Dann sind die Fundamentalgruppen und zueinander kanonisch isomorph.

Die kanonischen Abbildungen

zeigen, da die Hintereinanderschaltung die Identität ist, dass eine Untergruppe von ist. Es sei ein stetiger Weg in mit Aufpunkt . Wir müssen zeigen, dass er homotop zu einem Weg in ist. Wir betrachten dazu die zusammengesetzte Abbildung

und behaupten, dass dies eine Homotopie zwischen und dem Weg ist, der ganz in verläuft. Dies folgt aus

für alle ,

für alle ,

für alle und

für alle .