Kurs:Lineare Algebra (Osnabrück 2015-2016)/Teil I/Vorlesung 25/kontrolle

„J'ai décidé d'être heureux parce que c'est bon pour la santé“
Voltaire



Trigonalisierbare Abbildungen

Es sei ein Körper und ein endlichdimensionaler - Vektorraum. Eine lineare Abbildung heißt trigonalisierbar, wenn sie bezüglich einer geeigneten Basis durch eine obere Dreiecksmatrix beschrieben wird.

Diagonalisierbare lineare Abbildungen sind insbesondere trigonalisierbar. Die Umkehrung gilt nicht, wie eine Scherungsmatrix zeigt (siehe Beispiel 22.12). Wir werden in Satz 25.9 sehen, dass eine lineare Abbildung genau dann trigonalisierbar ist, wenn das charakteristische Polynom in Linearfaktoren zerfällt. Eine quadratische Matrix heißt trigonalisierbar, wenn die dadurch definierte lineare Abbildung trigonalisierbar ist. Dies bedeutet, dass es eine Basis gibt, bezüglich der die Abbildung durch eine obere Dreiecksmatrix beschrieben wird, bzw., dass es eine invertierbare Matrix (die Basiswechselmatrix) derart gibt, dass

eine obere Dreiecksmatrix ist. Somit ist eine Matrix genau dann trigonalisierbar, wenn sie ähnlich zu einer oberen Dreiecksmatrix ist. Das Auffinden einer Basis, bezüglich der obere Dreiecksgestalt vorliegt bzw. die Durchführung des Basiswechsels nennt man Trigonalisierung.


Wir behaupten, dass die Matrix

trigonalisierbar ist. Die Matrix

ist invertierbar mit der inversen Matrix

Eine direkte Rechnung zeigt

Bei diesem Nachweis der Trigonalisierbarkeit taucht die Übergangsmatrix aus dem Nichts auf. Ein einsichtigerer Trigonalisierbarkeitsnachweis ergibt sich mit Hilfe des charakteristischen Polynoms und Satz 25.9. Das charakteristische Polynom ist

zerfällt also in Linearfaktoren.




Es seien endlichdimensionale Vektorräume über dem Körper und

lineare Abbildungen und es sei

die Produktabbildung.

Dann ist genau dann trigonalisierbar, wenn dies für alle gilt.

Beweis

Siehe Aufgabe 25.5.




Invariante Untervektorräume

Ein trigonalisierbarer Endomorphismus besitzt bezüglich einer geeigneten Basis die Gestalt

Eigenschaften, die für eine solche obere Dreiecksmatrix gelten und die als eine Eigenschaft der linearen Abbildung beschreibbar, also unabhängig von einer gewählten Basis sind, müssen für eine trigonalisierbare Abbildung gelten. Solche Eigenschaften wollen wir verstehen. Durch eine obere Dreiecksmatrix wird der -te Standardvektor auf

abgebildet. Insbesondere ist ein Eigenvektor zum Eigenwert . Charakteristisch für trigonalisierbare Abbildungen ist, dass der Untervektorraum

durch in sich selbst hinein abgebildet wird, d.h. die sind - invariante Untervektorräume, die ineinander enthalten sind und deren Dimension gleich ist. Wir werden nach einigen Vorbereitungen zeigen, dass diese Eigenschaft trigonalisierbare Abbildungen charakterisiert.



Lemma  Lemma 25.4 ändern

Es sei ein Körper und es sei ein - dimensionaler Vektorraum. Es sei

eine lineare Abbildung und es sei ein Eigenwert von .

Dann gibt es einen - invarianten Untervektorraum der Dimension .

Nach Voraussetzung und nach Lemma 22.1 besitzt die Abbildung einen nichttrivialen Kern. Sie ist also nicht injektiv und nach Korollar 11.8 auch nicht surjektiv. Daher ist

ein echter Unterraum von . Es gibt dann auch einen Untervektorraum der Dimension , der enthält. Zu gehört wegen

das Bild zu , d.h. ist -invariant.


Wenn ein -invarianter Untervektorraum und ein Polynom ist, so ist auch -invariant, siehe Aufgabe 25.12. In dieser Situation gilt die folgende Gleichheit.


Lemma  Lemma 25.5 ändern

Es sei ein Körper, ein - Vektorraum und

eine lineare Abbildung. Es sei ein - invarianter Untervektorraum.

Dann gilt zu jedem Polynom die Beziehung

wobei hier die im Definitionsbereich und auch im Bildbereich eingeschränkte Abbildung bezeichnet.

Dies überprüft man direkt für die Potenzen und für Linearkombinationen davon.



Korollar  Korollar 25.6 ändern

Es sei ein Körper und es sei ein endlichdimensionaler - Vektorraum. Es sei

eine lineare Abbildung. Es sei ein - invarianter Untervektorraum und

die Einschränkung auf (auch im Bildbereich).

Dann ist das Minimalpolynom zu ein Vielfaches des Minimalpolynoms von .

Es sei das Minimalpolynom zu . Für ist nach Lemma 25.5

Daher annulliert den eingeschränkten Endomorphismus und daher ist ein Vielfaches des Minimalpolynoms von .




Charakterisierungen für trigonalisierbar
Eine Fahne setzt sich aus dem Fußpunkt, der Fahnenstange, dem Fahnentuch und dem Raum, in dem das Tuch weht, zusammen.



Es sei ein Körper und ein endlichdimensionaler - Vektorraum der Dimension Dann heißt eine Kette von Untervektorräumen

eine Fahne in .


Es sei ein Vektorraum der Dimension und

eine lineare Abbildung. Eine Fahne

heißt invariant, wenn für alle ist.



Es sei ein Körper und es sei ein endlichdimensionaler - Vektorraum. Es sei

eine lineare Abbildung. Dann sind folgende Aussagen äquivalent.

  1. ist trigonalisierbar.
  2. Es gibt eine - invariante Fahne.
  3. Das charakteristische Polynom zerfällt in Linearfaktoren.
  4. Das Minimalpolynom zerfällt in Linearfaktoren.

Wenn trigonalisierbar ist und bezüglich einer Basis durch die Matrix beschrieben wird, so gibt es eine invertierbare Matrix (es sei ) derart, dass eine obere Dreiecksmatrix ist.

Von (1) nach (2). Es sei eine Basis, bezüglich der die beschreibende Matrix zu obere Dreiecksgestalt besitzt. Dann folgt durch direkte Interpretation der Matrix, dass die Untervektorräume

- invariant sind und somit eine invariante Fahne vorliegt.

Von (2) nach (1). Es sei

eine - invariante Fahne. Aufgrund des Basisergänzungssatzes gibt es eine Basis von mit

Da die Fahne invariant ist, gilt

Bezüglich dieser Basis besitzt die beschreibende Matrix zu somit obere Dreiecksgestalt.

Von (1) nach (3). Das charakteristische Polynom von ist gleich dem charakteristischen Polynom , wobei eine beschreibende Matrix bezüglich einer beliebigen Basis ist. Wir können also annehmen, dass eine obere Dreiecksmatrix ist. Dann ist nach Lemma 16.4 das charakteristische Polynom das Produkt der Linearfaktoren zu den Diagonaleinträgen.

Aus (3) folgt (4), da das Minimalpolynom nach Korollar 24.3 ein Teiler des charakteristischen Polynoms ist.

Von (4) nach (1). Wir beweisen die Aussage durch Induktion nach , wobei die Fälle

klar sind. Nach Voraussetzung und nach Satz 23.2 besitzt einen Eigenwert und damit auch einen Eigenvektor. Nach Lemma 25.4 gibt es einen -dimensionalen Untervektorraum

der - invariant ist. Es sei eine Basis von , die wir durch zu einer Basis von ergänzen. Bezüglich dieser Basis wird durch eine Matrix der Gestalt

beschrieben. Die -Untermatrix oben links beschreibt dabei die (beidseitige) Einschränkung von auf bezüglich der gegebenen Basis. Nach Korollar 25.6 ist das Minimalpolynom von ein Teiler des Minimalpolynoms von und zerfällt daher wie dieses in Linearfaktoren. Nach Induktionsvoraussetzung ist trigonalisierbar und damit auch selbst.

Der Zusatz ergibt sich wie folgt. Die trigonalisierbare Abbildung werde bezüglich der Basis durch die Matrix beschrieben, und bezüglich der Basis durch die obere Dreiecksmatrix . Dann gilt nach Korollar 11.11 die Beziehung , wobei den Basiswechsel beschreibt.



Es sei eine quadratische Matrix mit komplexen Einträgen.

Dann ist trigonalisierbar.

Dies folgt aus Satz 25.9 und dem Fundamentalsatz der Algebra.



Wir betrachten eine reelle -Matrix . Das charakteristische Polynom ist

Dieses Polynom zerfällt in (reelle) Linearfaktoren genau dann, wenn ist. Genau in diesem Fall ist die Matrix nach Satz 25.9 trigonalisierbar.