Kurs:Differentialgeometrie (Osnabrück 2023)/Dachprodukt/Anhang



Das Dachprodukt

Unsere Zielsetzung für die folgenden Wochen ist es, eine sinnvolle Volumentheorie auf Mannigfaltigkeiten zu entwickeln. Was ist beispielsweise der Flächeninhalt einer gekrümmten Fläche wie der Oberfläche einer Kugel? Jeder Tangentialraum in einem Punkt einer Mannigfaltigkeit ist ein reeller endlichdimensionaler Vektorraum und besitzt daher Borel-Lebesgue-Maße, die allerdings nur bis auf die Multiplikation mit einem Skalar wohlbestimmt sind. Für eine sinnvolle Maßtheorie müssen diese Maße in einer kontrollierbaren Weise von den Punkten der Mannigfaltigkeit abhängen. Dies kann man am besten mit Differentialformen (also Schnitte im Kotangentialbündel) erreichen, die wir schon erwähnt haben und bald studieren werden.

Ihre Konstruktion erleichtert sich wesentlich durch die sogenannten Dachprodukte eines Vektorraumes. Dachprodukte hängen stark mit Determinanten und allgemeiner mit multilinearen alternierenden Formen zusammen. Für die Existenz der Dachprodukte brauchen wir Restklassenräume. Diese beruhen auf einer fundamentalen algebraischen Konstruktion, für die wir auf Kurs:Lineare_Algebra_(Osnabrück_2017-2018)/Teil_II/Vorlesung_48 verweisen.

Wir erinnern an multilineare und alternierende Abbildungen.


Es sei ein Körper und ein - Vektorraum. Es sei und

eine Abbildung

in einen weiteren -Vektorraum . Man nennt multilinear, wenn für jedes und jedes -Tupel
die induzierte Abbildung

linear ist.

Eine multilineare Abbildung heißt alternierend, wenn folgendes gilt: Falls in zwei Einträge übereinstimmen, also für ein Paar , so ist .


Das wichtigste Beispiel ist die Determinante (auf ), die eng mit der Volumenmessung zusammenhängt. Für die Maßthorie auf Mannigfaltigkeiten brauchen wir ein Konzept, dass für jeden Punkt eine infinitesimale Volumenform beschreibt, und dafür braucht man in jedem Tangentialraum eine Determinantenfunktion. Da es allerdings keine Einheitswürfel (da keine Standardbasis) in den Tangentialräumen gibt, wird es keine eindeutig bestimmte Determinantenfunktion geben, sondern verschiedene Determinantenfunktionen, die sich punktweise um einen Skalar unterscheiden. Ferner möchten wir nicht nur volldimensionalen Objekten ein Volumen zuordnen, sondern auch kleinerdimensionalen Objekten, wofür wir alternierende Formen von kleinerem Grad brauchen. Hier entwickeln wir die dazu benötigte lineare Algebra.


Konstruktion  

Es sei ein Körper, ein -Vektorraum und . Wir konstruieren das sogenannte -te Dachprodukt von mit sich selbst, geschrieben . Dazu betrachten wir die Menge aller Symbole der Form

und die zugehörige Menge der . Wir betrachten den Vektorraum

das ist die Menge aller (endlichen) Summen

die bilden eine Basis. Dies ist mit der natürlichen Addition und der natürlichen Skalarmultiplikation ein Vektorraum, und zwar ein Untervektorraum des Abbildungsraumes (es handelt sich bei um die Menge derjenigen Vektoren, die für fast alle Elemente den Wert haben). In betrachten wir den Untervektorraum , der von den folgenden Elementen erzeugt wird (die man die Standardrelationen des Dachprodukts nennt).

für beliebige .

für beliebige und .

für und beliebige .

Dabei ist der Leitgedanke, die Regeln, die für eine alternierende multilineare Abbildung gelten müssen, dadurch zu erzwingen, dass man die obigen Relationen zu macht. Der erste Typ repräsentiert die Additivität in jedem Argument, die zweite die Verträglichkeit mit der skalaren Multiplikation, die dritte die alternierende Eigenschaft.

Man setzt nun

d.h. man bildet den Restklassenraum von modulo dem Unterraum .

Die Elemente bilden dabei ein Erzeugendensystem von . Die Restklasse von modulo bezeichnen wir mit[1]

Die Standardrelationen werden dann zu den Rechenregeln[2]

und


Definition  

Es sei ein Körper und ein - Vektorraum. Man nennt den (in Konstruktion Anhang 2.1 konstruierten) -Vektorraum die -te äußere Potenz (oder das -te Dachprodukt) von . Die Abbildung

nennt man die universelle alternierende Abbildung.



Lemma  

Es sei ein Körper und ein - Vektorraum. Dann gelten für die äußeren Potenzen folgende Aussagen.

  1. Die Elemente der Form mit bilden ein Erzeugendensystem von .
  2. Die Abbildung

    ist multilinear und alternierend.

  3. Es ist
  4. Es seien gegeben und seien

    für . Dann ist

Beweis  

(1) folgt direkt aus der Konstruktion.
(2). Es liegt die zusammengesetzte Abbildung

vor, wobei auf und dies auf die Restklasse abgebildet wird. Dabei sichert die Definition des Unterraums , dass jeweils die Eigenschaften einer multilinearen alternierenden Abbildung erfüllt sind.

(3) gilt nach Lemma 16.8 (Lineare Algebra (Osnabrück 2017-2018)) für jede alternierende Abbildung.
(4). Die erste Gleichung gilt nach Lemma 16.6 (Lineare Algebra (Osnabrück 2017-2018)) für jede multilineare Abbildung. Wenn sich in dem Indextupel ein Eintrag wiederholt, so ist wegen alternierend. Wir müssen also nur noch Tupel betrachten, wo alle Einträge verschieden sind. Diese können nach Umordnen auf die Form gebracht werden. Bei einem fixierten aufsteigenden Indextupel ist die Summe über alle dazu permutierten Indextupel gleich




Korollar  

Es sei ein Körper und ein - Vektorraum der Dimension . Es seien und Vektoren in , die miteinander in der Beziehung

stehen, wobei eine - Matrix bezeichnet.

Dann gilt in die Beziehung

Beweis  

Mit ist und mit der transponierten Matrix ist . Damit sind wir in der Notation von Lemma Anhang 2.3  (4) und es gilt

da dann sein muss. Daher folgt die Aussage aus der Leibniz-Formel für die Determinante.




Eigenschaften des Dachprodukts

Die folgende Aussage beschreibt die universelle Eigenschaft des Dachproduktes.


Satz  

Es sei ein Körper, ein - Vektorraum und . Es sei

eine alternierende multilineare Abbildung in einen weiteren -Vektorraum .

Dann gibt es eine eindeutig bestimmte lineare Abbildung

derart, dass das Diagramm

kommutiert.

Beweis  

Wir verwenden die Notation aus Konstruktion Anhang 2.1. Durch die Zuordnung

wird nach Satz 10.10 (Lineare Algebra (Osnabrück 2017-2018)) eine - lineare Abbildung

definiert. Da multilinear und alternierend ist, wird unter der Untervektorraum auf abgebildet. Nach Satz 48.7 (Lineare Algebra (Osnabrück 2017-2018)) gibt es daher eine -lineare Abbildung

die mit verträglich ist.
Die Eindeutigkeit ergibt sich daraus, dass die ein Erzeugendensystem von bilden und diese auf abgebildet werden müssen.


Es bezeichne die Menge aller alternierenden Abbildungen von nach . Diese Menge kann man mit einer natürlichen - Vektorraumstruktur versehen.


Korollar  

Es sei ein Körper, ein - Vektorraum und .

Dann gibt es eine natürliche Isomorphie

Beweis  

Die Abbildung ist einfach die Verknüpfung , wobei die kanonische Abbildung bezeichnet. Die Linearität der Zuordnung ergibt sich aus den linearen Strukturen des Dualraumes und des Raumes der alternierenden Formen. Die Bijektivität der Abbildung folgt aus Satz 6.1, angewendet auf .



Satz  

Es sei ein Körper und ein endlichdimensionaler - Vektorraum der Dimension . Es sei eine Basis von und es sei .

Dann bilden die Dachprodukte

eine Basis von .

Beweis  

Wir zeigen zuerst, dass ein Erzeugendensystem vorliegt.  Da die Elemente der Form nach Lemma Anhang 2.3  (1) ein Erzeugendensystem von bilden, genügt es zu zeigen, dass man diese durch die angegebenen Elemente darstellen kann. Für jedes gibt es eine Darstellung , daher kann man nach Lemma Anhang 2.3  (4) die als Linearkombinationen von Dachprodukten der Basiselemente darstellen, wobei allerdings jede Reihenfolge vorkommen kann. Es sei also gegeben mit . Durch Vertauschen von benachbarten Vektoren kann man nach Lemma Anhang 2.3  (3) (unter Inkaufnahme eines anderen Vorzeichens) erreichen, dass die Indizes (nicht notwendigerweise streng) aufsteigend geordnet sind. Wenn sich ein Index wiederholt, so ist nach Lemma Anhang 2.3  (2) das Dachprodukt . Also wiederholt sich kein Index und diese Dachprodukte sind in der gewünschten Form.

Zum Nachweis der linearen Unabhängigkeit zeigen wir unter Verwendung von Lemma 14.7 (Lineare Algebra (Osnabrück 2017-2018)), dass es zu jeder -elementigen Teilmenge (mit ) eine -lineare Abbildung

gibt, die nicht auf abbildet, aber alle anderen in Frage stehenden Dachprodukte auf abbildet. Dazu genügt es nach Satz 6.1, eine alternierende multilineare Abbildung

anzugeben mit , aber mit für jedes andere aufsteigende Indextupel. Es sei der von den , , erzeugte Untervektorraum von und der Restklassenraum. Dann bilden die Bilder der , , eine Basis von , und die Bilder von allen anderen -Teilmengen der gegebenen Basis bilden dort keine Basis, da mindestens ein Element davon auf geht. Wir betrachten nun die zusammengesetzte Abbildung

Diese Abbildung ist nach Satz 16.9 (Lineare Algebra (Osnabrück 2017-2018)) multilinear und nach Satz 16.10 (Lineare Algebra (Osnabrück 2017-2018)) alternierend. Nach Satz 16.11 (Lineare Algebra (Osnabrück 2017-2018)) ist genau dann, wenn die Bilder von in keine Basis bilden.


Bei mit der Standardbasis nennt man die  mit die Standardbasis von .



Korollar  

Es sei ein Körper und ein endlichdimensionaler - Vektorraum der Dimension .

Dann besitzt das -te äußere Produkt die Dimension

Beweis  

Insbesondere ist die äußere Potenz für eindimensional (es ist ) und für -dimensional (es ist ). Für ist eindimensional, und die Determinante induziert (nach einer Identifizierung von mit ) einen Isomorphismus

Für sind die äußeren Produkte der Nullraum und besitzen die Dimension .

Wir erweitern die oben gezeigte natürliche Isomorphie zu einer natürlichen Isomorphie



Satz  

Es sei ein Körper und ein dimensionaler Vektorraum. Es sei .

Dann gibt es eine natürliche Isomorphie

mit

(mit und ).

Beweis  

Wir betrachten die Abbildung (mit Faktoren)

mit

Für fixierte ist die Abbildung rechts multilinear und alternierend, wie eine direkte Überprüfung unter Verwendung der Determinantenregeln zeigt. Daher entspricht diese nach Korollar 57.8 (Lineare Algebra (Osnabrück 2017-2018)) einem Element in . Insgesamt liegt also eine Abbildung

vor. Eine direkte Prüfung zeigt, dass die Gesamtzuordung ebenfalls multilinear und alternierend ist. Aufgrund der universellen Eigenschaft gibt es daher eine lineare Abbildung

Diese müssen wir als Isomorphismus nachweisen. Es sei dazu eine Basis von mit der zugehörigen Dualbasis . Nach Satz 58.1 (Lineare Algebra (Osnabrück 2017-2018)) bilden die

eine Basis von . Ebenso bilden die

eine Basis von mit zugehöriger Dualbasis . Wir zeigen, dass unter auf abgebildet wird. Für ist

Bei gibt es ein , das von allen verschieden ist. Daher ist die -te Zeile der Matrix und somit ist die Determinante . Wenn dagegen die Indexmengen übereinstimmen, so ergibt sich die Einheitsmatrix mit der Determinante . Diese Wirkungsweise stimmt mit der von überein.



Dachprodukte bei linearen Abbildungen



Korollar  

Es sei ein Körper, und seien - Vektorräume und

sei eine - lineare Abbildung.

Dann gibt es zu jedem eine -lineare Abbildung

mit .

Beweis  

Die Abbildung

ist nach Aufgabe . multilinear und alternierend. Daher gibt es nach Satz 6.1 eine eindeutig bestimmte lineare Abbildung

mit .



Proposition  

Es sei ein Körper, und seien - Vektorräume und

sei eine - lineare Abbildung. Zu sei

die zugehörige -lineare Abbildung. Dann gelten folgende Eigenschaften.
  1. Wenn surjektiv ist, dann ist auch surjektiv.
  2. Wenn injektiv ist, dann ist auch injektiv.
  3. Wenn ein weiterer -Vektorraum und

    eine weitere -lineare Abbildung ist, so gilt

Beweis  

(1). Es seien gegeben und seien Urbilder davon, also . Dann ist

Nach Lemma Anhang 2.3  (1) ergibt sich die Surjektivität.
(2). Wir können aufgrund der Konstruktion des Dachproduktes annehmen, dass und endlichdimensional sind. Die Aussage folgt dann aufgrund der expliziten Beschreibung der Basen in Satz 58.1 (Lineare Algebra (Osnabrück 2017-2018)).
(3). Es genügt, die Gleichheit für das Erzeugendensystem mit zu zeigen, wofür es klar ist.



Lemma  

Es sei ein - Vektorraum und .

Dann gibt es eine eindeutig bestimmte multilineare Abbildung

mit

Beweis  

Da die Dachprodukte bzw. jeweils Erzeugendensysteme sind, kann es maximal eine multilineare Abbildung geben, die für die Dachprodukte einfach die Verkettung ist. Für beliebige Linearkombinationen und muss dann (wegen der geforderten Multilinearität)

gelten. Wir müssen zeigen, dass dadurch eine wohldefinierte Abbildung gegeben ist, d.h. dass die Summe rechts nicht von den für bzw. gewählten Darstellungen abhängt. Es sei also eine zweite Darstellung, wobei wir die Indexmenge als gleich annehmen dürfen, da wir fehlende Summanden mit dem Koeffizienten versehen können. Die Differenz ist dann eine (im Allgemeinen nicht triviale) Darstellung der . D.h. ist eine Linearkombination aus den in Konstruktion Anhang 2.1 beschriebenen Standardrelationen für das Dachprodukt. Wenn man eine solche Standardrelation der Länge in jedem Summanden um das Indextupel erweitert, so erhält man eine Standardrelation der Länge . Dies bedeutet, dass aus einer Darstellung der bei der Verknüpfung mit einem beliebigen eine Darstellung der entsteht. Daher ist das Dachprodukt unabhängig von der gewählten Darstellung für . Da man die Rollen von und vertauschen kann, ist die Darstellung auch unabhängig von der gewählten Darstellung für . Die Multilinearität folgt unmittelbar aus der expliziten Beschreibung.

  1. Es ist nicht einfach, sich unter den Ausdrücken bzw. etwas vorzustellen. Wichtiger als die „Bedeutung“ dieser Symbole ist ihr Transformationsverhalten und die Rechenregeln, die dafür gelten. Erst der operative Umgang mit diesen Symbolen lässt die Bedeutung entstehen. Wenn man aber eine ungefähre Vorstellung haben möchte, so kann man sagen, dass das von den Vektoren erzeugte „orientierte“ Parallelotop in repräsentiert. Das Dachprodukt besteht dann aus Linearkombinationen von solchen Parallelotopen.

  2. Es gilt die Klammerungskonvention „Dachprodukt vor Punktrechnung“, d.h. der Ausdruck ist als zu lesen. Es gelten aber ohnehin die Gleichheiten