Kurs:Maß- und Integrationstheorie (Osnabrück 2022-2023)/Vorlesung 14/kontrolle
- Die Transformationsformel für Integrale
Es seien und offene Mengen im und es sei
ein - Diffeomorphismus mit der Jacobi-Determinante für . Es sei ein kompakter achsenparalleler Quader.
Dann gilt
Da stetig differenzierbar ist, ist die Abbildung
stetig und daher nach Satz 36.10 (Analysis (Osnabrück 2021-2023)) gleichmäßig stetig auf dem kompakten Quader . D.h. zu jedem gibt es ein mit für alle . Dann gibt es auch ein derart, dass für alle kompakten Teilquader mit maximaler Kantenlänge das Bild in einem abgeschlossenen Intervall der Länge liegt. Damit ist die Differenz zwischen dem Minimum und dem Maximum von maximal gleich .
Sei gegeben. Wir unterteilen in kompakte Teilquader, indem wir jede Quaderkante in gleichlange Teile unterteilen, und wählen dabei so groß, dass die entstehenden Teilquader die oben beschriebene Eigenschaft haben. Es sei eine Indexmenge zu dieser Unterteilung, es ist also und damit . Diese beiden Vereinigungen sind nicht disjunkt, jedoch sind die Schnittmengen der Quader nach Lemma 6.11 und die Schnittmengen der als Bilder von Quaderseiten nach Korollar 13.6 Nullmengen. Wir wenden Lemma 13.7 auf die Teilquader an und erhalten
Dabei ist die Differenz zwischen links und rechts durch
beschränkt, kann also durch beliebig klein gemacht werden. Die gleichen Abschätzungen gelten wegen der Monotonie des Integrals auch für das Integral , sodass
gilt.
Es seien und offene Mengen im und es sei
ein -Diffeomorphismus mit der Jacobi-Determinante für . Es sei eine messbare Menge.
Dann ist ebenfalls messbar und es gilt
Ein Diffeomorphismus und seine Umkehrabbildung sind stetig, daher liegt eine Bijektion der messbaren Teilmengen von und von vor. Wir betrachten die beiden Zuordnungen
also das Maß auf mit der Dichte , und
also das
Bildmaß
von unter der Umkehrabbildung , und müssen zeigen, dass diese beiden Maße gleich sind.
Nach
Korollar 14.1
gilt die Gleichheit für alle kompakten achsenparallelen Quader. Aufgrund von
Aufgabe 9.3
bzw.
Korollar 13.6
gilt die Gleichheit auch für alle offenen bzw. „nach oben halboffenen“ achsenparallelen Quader, also Produkte von
nach oben halboffenen Intervallen.
Die Menge der endlichen disjunkten Vereinigungen von diesen zuletzt genannten Quadern bilden einen
Mengen-Präring im . Diese Menge ist auch ein durchschnittsstabiles
Erzeugendensystem
für das System der
Borelmengen.
Daher müssen nach
Satz 3.7
die beiden Maße generell übereinstimmen.
Wir kommen zur Transformationsformel für Integrale.
Es seien und offene Mengen im und es sei
ein - Diffeomorphismus mit der Jacobi-Determinante
für . Es sei
eine messbare Funktion.
Dann ist auf genau dann integrierbar, wenn die Hintereinanderschaltung auf integrierbar ist. In diesem Fall gilt
Die Zuordnung für messbare Mengen ist ein Maß auf und zwar handelt es sich um das Bildmaß von unter der Umkehrabbildung
Nach Satz 14.2 besitzt dieses Maß die Dichte . Daher gilt nach Aufgabe 13.20 und der allgemeinen Transformationsformel
- Beispiele zur Transformationsformel
Wenn bei einem Diffeomorphismus der Betrag der Jacobi-Determinante überall ist, so ist er maßtreu. Es ist einfach, maßtreue, nichtlineare Abbildungen zu konstruieren.
Es sei ein beliebiges Polynom in der einen Variablen . Dann ist die Abbildung
ein flächentreuer Diffeomorphismus. Die Jacobi-Matrix von ist ja
sodass die Jacobi-Determinante konstant gleich ist. Wenn man die Rollen von und vertauscht und die Hintereinanderschaltung von solchen Abbildungen betrachtet, so erhält man flächentreue Abbildungen, denen man es nicht auf den ersten Blick ansieht. Beispielsweise ist zu und die Hintereinanderschaltung
Es sei
die Polarkoordinatenauswertung und es seien und offene Mengen, auf denen einen Diffeomorphismus induziert. Es sei
eine integrierbare Funktion.
Dann ist
Dies gilt auch dann, wenn außerhalb von Nullmengen ein Diffeomorphismus vorliegt. Insbesondere gilt bei stetigem die Formel
Es ist
Durch eine einfache Substitution ist die Aussage äquivalent zu
Nennen wir dieses Integral . Nach Korollar 13.2 ist
Durch Einführung von Polarkoordinaten und ist dieses Integral nach Korollar 14.5 und nach einer erneuten Anwendung von Korollar 13.2 gleich
Damit ist auch .
Es soll eine Straße in der Ebene der Breite asphaltiert werden. Dabei wird die Straße durch den Verlauf des Mittelstreifen vorgegeben, der durch die Kurve
bestimmt ist. Dabei sei zweimal stetig differenzierbar und bogenparametrisiert, d.h. es sei , was bedeutet, dass die Mittelstreifenkurve mit normierter Geschwindigkeit durchlaufen wird. Die Breite ist dabei senkrecht zum Mittelstreifen zu messen. Die zu asphaltierende Trasse wird dann durch die Abbildung
parametrisiert. Wir nehmen an, dass diese Parametrisierung injektiv ist, was erfüllt ist, wenn die Mittelstreifenabbildung injektiv ist und die Straße nicht zu breit werden soll.
Die Jacobi-Matrix der Parametrisierung ist
Die Determinante davon ist
Daher ist die Asphaltfläche nach der Transformationsformel gleich
Wenn wir weiter annehmen, dass
ist (was bedeutet, dass die Straßenbreite nicht allzu groß ist), so ist dieses Integral nach Korollar 13.2 geich
Dies bedeutet, dass die Asphaltfläche gleich der Mittelstreifenlänge mal der Straßenbreite ist.