Kurs:Maß- und Integrationstheorie (Osnabrück 2022-2023)/Vorlesung 6/kontrolle

Wir haben jetzt alle Hilfsmittel zusammen, um auf den Borel-Mengen des ein Maß zu definieren, das für einen Quader, dessen Seiten reelle Intervalle sind, einfach das Produkt der Seitenlängen ist. Dieses Maß heißt Borel-Lebesgue-Maß. Wir beginnen mit der eindimensionalen Situation.



Das Borel-Lebesgue-Maß auf .



Das Mengensystem aller Teilmengen , die sich als eine endliche (disjunkte) Vereinigung von halboffenen Intervallen schreiben lassen,

ist ein Mengen-Präring.

Eine Teilmenge lässt sich genau dann als eine endliche Vereinigung von halboffenen Intervallen schreiben, wenn dies mit endlich vielen disjunkten halboffenen Teilmengen möglich ist, siehe Aufgabe 6.20. Die leere Menge ist das halboffene Interall (bzw. die leere Vereinigung). Die Abgeschlossenheit unter Vereinigungen ist klar. Sei und . Dann ist

Da eine Vereinigung von maximal zwei halboffenen Intervallen ist, folgt die Behauptung durch Induktion über .



Lemma Lemma 6.2 ändern

Es sei der Mengen-Präring aller Teilmengen , die sich als eine endliche Vereinigung von halboffenen Intervallen schreiben lassen. Dann gelten folgende Aussagen.

  1. Die zu über eine Zerlegung in disjunkte halboffene Intervalle definierte Zahl

    ist wohldefiniert.

  2. Durch die Zuordnung wird ein Prämaß auf diesem Präring definiert.

Beweis

Siehe Aufgabe 6.21.



Satz  Satz 6.3 ändern

Es sei die - Algebra der Borel-Mengen auf .

Dann gibt es genau ein (- endliches) Maß auf , das für jedes halboffene Intervall den Wert besitzt.

Statt halboffene Intervalle kann man auch offene oder abgeschlossene Intervalle nehmen.

Dies folgt aus Lemma 6.2, aus Satz 3.7 und aus Satz 4.7. Durch die gegebene Normierung auf den Intervallen sind die in Frage stehenden Maße von vornherein -endlich. Der Zusatz gilt, da man halboffene Intervalle durch offene bzw. abgeschlossene Intervalle beliebig gut approximieren kann.



Das eindeutig bestimmte Maß auf , das für jedes halboffene Intervall den Wert besitzt, heißt (eindimensionales) Borel-Lebesgue-Maß.

Für jede Borel-Menge ist



Das Borel-Lebesgue-Maß auf .



Satz  Satz 6.5 ändern

Der sei mit der - Algebra der Borel-Mengen versehen.

Dann gibt es auf genau ein (- endliches) Maß

das für alle Quader

den Wert

besitzt.

Die Aussage gilt auch für (achsenparallele) Quader mit offenen bzw. abgeschlossenen Intervallen als Seiten.

Für ist dies der Inhalt von Satz 6.3. Für folgt dies aus Satz 5.4, angewendet auf das -fache Produkt von mit sich selbst.



Das eindeutig bestimmte Maß auf , das für jeden Quader der Form den Wert besitzt, heißt Borel-Lebesgue-Maß auf .

Das Borel-Lebesgue-Maß ordnet also jeder Borel-Menge eine reelle Zahl oder das Symbol zu. Die Quader bilden dabei die Grundkörper, denen auf eine besonders einfache Weise ein Maß zugeordnet wird, wodurch das gesamte Maß festgelegt wird. Für eine beliebige messbare Menge ist dabei gegeben als das Infimum von über alle abzählbaren Überpflasterungen von mit Quadern (so war eben das äußere Maß definiert, mit dessen Hilfe wir den Fortsetzungssatz für Maße aufstellen konnten). Es gibt kein allgemeines Verfahren, für gegebene Mengen (beispielsweise Flächenstücke, Körper) ihr Maß (ihren Flächeninhalt, ihr Volumen) effektiv zu bestimmen. Eine wichtige Technik ist die Integration von Funktionen in einer und in mehreren Variablen.



Die Translationsinvarianz des Borel-Lebesgue-Maßes

Für eine beliebige Teilmenge in einem Vektorraum und einen Vektor nennt man

die um verschobene Menge.


Ein Maß auf einem reellen endlichdimensionalen Vektorraum heißt translationsinvariant, wenn für alle messbaren Teilmengen und alle Vektoren die Gleichheit

gilt.



Satz  Satz 6.9 ändern

Das Borel-Lebesgue-Maß auf

ist translationsinvariant.

Zu betrachten wir die Translationsabbildung

Es sei das Bildmaß unter der Translationsabbildung. Dieses ist wieder ein - endliches Maß. Für jeden Quader ist bzw. wieder ein achsenparalleler Quader, wobei sich die Seitenlängen nicht ändern. Daher ist

Das Maß stimmt also auf den Quadern mit überein und daher ist nach Satz 6.5 überhaupt


Die Translationsinvarianz des Borel-Lebesgue-Maßes kann man auch so formulieren, dass jede Translation eine maßtreue Abbildung ist.


Es sei ein endlichdimensionaler reeller Vektorraum und seien linear unabhängige Vektoren gegeben. Dann nennt man

das von den erzeugte Parallelotop.



Lemma  Lemma 6.11 ändern

Es sei ein translationsinvariantes Maß auf dem , das auf dem Einheitswürfel endlich sei. Es sei ein echter Untervektorraum.

Dann ist .

 Es sei ein Untervektorraum der Dimension und nehmen wir an, dass ist. Es sei eine Basis von und

das davon erzeugte -dimensionale Parallelotop.[1] Dies lässt sich durch endlich viele verschobene Einheitswürfel überpflastern und besitzt demnach ein endliches Maß. Die verschobenen Parallelotope

besitzen wegen der Translationsinvarianz alle dasselbe Maß und bilden eine Überpflasterung von . Da es abzählbar viele sind, muss gelten. Es sei nun eine Ergänzung der Basis zu einer Basis von , und sei

das zugehörige -dimensionale Parallelotop. Für dieses ist

Wir betrachten nun die abzählbar unendlich vielen Parallelotope

Diese liegen alle innerhalb von und besitzen wegen der Translationsinvarianz alle das gleiche Maß wie . Ferner sind sie paarweise disjunkt, da andernfalls ein nichttriviales Vielfaches von zu gehören würde. Aus

folgt , ein Widerspruch.


Allgemein nennt man Unterräume (und zwar nicht nur Untervektorräume, sondern auch affine Unterräume, also verschobene Untervektorräume) des der Dimension Hyperebenen. Insbesondere besitzen Hyperebenen das Maß .



Satz  Satz 6.12 ändern

Das Borel-Lebesgue-Maß

ist das einzige translationsinvariante Maß auf , das auf dem Einheitswürfel den Wert besitzt.

Das Borel-Lebesgue-Maß erfüllt nach Satz 6.9 diese Bedingungen. Es sei ein solches Maß. Nach Lemma 6.11 ist es egal, ob diese Bedingung an den abgeschlossenen, den offenen oder einen halboffenen Einheitswürfel gestellt wird. Wir werden durchgehend mit rechtsseitig offenen Quadern arbeiten. Da der durch abzählbar viele Verschiebungen des Einheitswürfels überdeckt wird, die wegen der Translationsinvarianz von alle das gleiche Maß besitzen, ist - endlich. Wir müssen zeigen, dass mit übereinstimmt, wobei es aufgrund des Eindeutigkeitssatzes genügt, die Gleichheit auf einem durchschnittsstabilen Erzeugendensystem für die Borelmengen nachzuweisen. Ein solches System bilden die Quader der Form mit rationalen Ecken. Wegen der Translationsinvarianz von besitzt ein solcher Quader das gleiche Maß wie der verschobene Quader . Wir schreiben einen solchen Quader unter Verwendung eines Hauptnenners als mit . Dieser Quader setzt sich disjunkt aus Quadern (nämlich mit ) zusammen, die alle das gleiche -Maß haben, da sie ineinander verschoben werden können. Das -Maß des Quaders ist also das -fache des -Maßes des Quaders . Da sich der Einheitswürfel aus verschobenen Kopien dieses kleineren Würfels zusammensetzt, muss und damit

sein.



Korollar  Korollar 6.13 ändern

Es sei ein translationsinvariantes Maß auf , das auf dem Einheitswürfel ein endliches Maß habe.

Dann gibt es eine eindeutig bestimmte Zahl mit .

Es sei , wobei der Einheitswürfel im sei. Wenn ist, so liegt das Nullmaß vor, da sich der mit abzählbar vielen verschobenen Einheitswürfeln überdecken lässt, die wegen der Translationsinvarianz ebenfalls das Maß haben. Dann hat der Gesamtraum das Maß und damit hat jede messbare Teilmenge das Maß . Es sei also . In diesem Fall betrachten wir das durch

definierte (umskalierte) Maß. Dieses ist nach wie vor translationsinvariant und besitzt auf dem Einheitswürfel den Wert . Nach Satz 6.12 ist also und somit ist .


  1. Wenn man eine Orthonormalbasis wählt handelt es sich um einen Würfel.