Kurs:Mathematik (Osnabrück 2009-2011)/Teil III/Vorlesung 81
- Eigenschaften des Dachprodukts
Die folgende Aussage beschreibt die universelle Eigenschaft des Dachproduktes.
Es sei ein Körper, ein - Vektorraum und . Es sei
eine alternierende multilineare Abbildung in einen weiteren -Vektorraum .
Dann gibt es eine eindeutig bestimmte lineare Abbildung
Wir verwenden die Notation aus Konstruktion 80.4. Durch die Zuordnung
wird nach Satz 12.3 eine - lineare Abbildung
definiert. Da multilinear und alternierend ist, wird unter der Untervektorraum auf abgebildet. Nach Satz RKR.4 gibt es daher eine -lineare Abbildung
die mit verträglich ist.
Die Eindeutigkeit ergibt sich daraus, dass die ein
Erzeugendensystem
von bilden und diese auf abgebildet werden müssen.
Die Abbildung ist einfach die Verknüpfung , wobei die kanonische Abbildung bezeichnet. Die Linearität der Zuordnung ergibt sich aus den linearen Strukturen des Dualraumes und des Raumes der alternierenden Formen. Die Bijektivität der Abbildung folgt aus Satz 81.1, angewendet auf .
Es sei ein Körper und ein endlichdimensionaler - Vektorraum der Dimension . Es sei eine Basis von und es sei .
Dann bilden die Dachprodukte
eine Basis von .
Wir zeigen zuerst, dass ein Erzeugendensystem vorliegt. Da die Elemente der Form nach
Lemma 80.6 (1)
ein
Erzeugendensystem
von bilden, genügt es zu zeigen, dass man diese durch die angegebenen Elemente darstellen kann. Für jedes gibt es eine Darstellung , daher kann man nach
Lemma 80.6 (4)
die als
Linearkombinationen
von Dachprodukten der Basiselemente darstellen, wobei allerdings jede Reihenfolge vorkommen kann. Es sei also gegeben mit . Durch Vertauschen von benachbarten Vektoren kann man nach
Lemma 80.6 (3)
(unter Inkaufnahme eines anderen Vorzeichens)
erreichen, dass die Indizes
(nicht notwendigerweise streng)
aufsteigend geordnet sind. Wenn sich ein Index wiederholt, so ist nach
Lemma 80.6 (2)
das Dachprodukt . Also wiederholt sich kein Index und diese Dachprodukte sind in der gewünschten Form.
Zum Nachweis der linearen Unabhängigkeit zeigen wir unter Verwendung von Fakt *****, dass es zu jeder -elementigen Teilmenge (mit ) eine -lineare Abbildung
gibt, die nicht auf abbildet, aber alle anderen in Frage stehenden Dachprodukte auf abbildet. Dazu genügt es nach Satz 81.1, eine alternierende multilineare Abbildung
anzugeben mit , aber mit für jedes andere aufsteigende Indextupel. Es sei der von den , , erzeugte Untervektorraum von und der Restklassenraum. Dann bilden die Bilder der , , eine Basis von , und die Bilder von allen anderen -Teilmengen der gegebenen Basis bilden dort keine Basis, da mindestens ein Element davon auf geht. Wir betrachten nun die zusammengesetzte Abbildung
Diese Abbildung ist nach
Satz 14.11
multilinear und nach
Satz 14.12
alternierend. Nach
Satz 14.13
ist genau dann, wenn die Bilder von in keine Basis bilden.
Bei mit der Standardbasis nennt man die
mit die Standardbasis von .
Es sei ein Körper und ein endlichdimensionaler - Vektorraum der Dimension .
Dann besitzt das -te äußere Produkt die Dimension
Insbesondere ist die äußere Potenz für eindimensional (es ist ) und für -dimensional (es ist ). Für ist eindimensional, und die Determinante induziert (nach einer Identifizierung von mit ) einen Isomorphismus
Wir erweitern die oben gezeigte natürliche Isomorphie zu einer natürlichen Isomorphie
Es sei ein Körper und ein dimensionaler Vektorraum. Es sei .
Dann gibt es eine natürliche Isomorphie
mit
(mit und ).
Wir betrachten die Abbildung (mit Faktoren)
mit
Für fixierte ist die Abbildung rechts multilinear und alternierend, wie eine direkte Überprüfung unter Verwendung der Determinantenregeln zeigt. Daher entspricht diese nach Korollar 81.2 einem Element in . Insgesamt liegt also eine Abbildung
vor. Eine direkte Prüfung zeigt, dass die Gesamtzuordung ebenfalls multilinear und alternierend ist. Aufgrund der universellen Eigenschaft gibt es daher eine lineare Abbildung
Diese müssen wir als Isomorphismus nachweisen. Es sei dazu eine Basis von mit der zugehörigen Dualbasis . Nach Satz 81.3 bilden die
eine Basis von . Ebenso bilden die
eine Basis von mit zugehöriger Dualbasis . Wir zeigen, dass unter auf abgebildet wird. Für ist
Bei gibt es ein , das von allen verschieden ist. Daher ist die -te Zeile der Matrix und somit ist die Determinante . Wenn dagegen die Indexmengen übereinstimmen, so ergibt sich die Einheitsmatrix mit der Determinante . Diese Wirkungsweise stimmt mit der von überein.
- Dachprodukte bei linearen Abbildungen
Es sei ein Körper, und seien - Vektorräume und
sei eine - lineare Abbildung.
Dann gibt es zu jedem eine -lineare Abbildung
Die Abbildung
ist nach Aufgabe 14.10 multilinear und alternierend. Daher gibt es nach Satz 81.1 eine eindeutig bestimmte lineare Abbildung
mit .
Es sei ein Körper, und seien - Vektorräume und
sei eine - lineare Abbildung. Zu sei
(1). Es seien gegeben und seien Urbilder davon, also . Dann ist
Nach
Lemma 80.6 (1)
ergibt sich die Surjektivität.
(2). Wir können
aufgrund der Konstruktion des Dachproduktes
annehmen, dass
und
endlichdimensional
sind. Die Aussage folgt dann aufgrund der expliziten Beschreibung der Basen in
Satz 81.3.
(3). Es genügt, die Gleichheit für das Erzeugendensystem mit zu zeigen, wofür es klar ist.
Da die Dachprodukte bzw. jeweils Erzeugendensysteme sind, kann es maximal eine multilineare Abbildung geben, die für die Dachprodukte einfach die Verkettung ist. Für beliebige Linearkombinationen und muss dann (wegen der geforderten Multilinearität)
gelten. Wir müssen zeigen, dass dadurch eine wohldefinierte Abbildung gegeben ist, d.h. dass die Summe rechts nicht von den für bzw. gewählten Darstellungen abhängt. Es sei also eine zweite Darstellung, wobei wir die Indexmenge als gleich annehmen dürfen, da wir fehlende Summanden mit dem Koeffizienten versehen können. Die Differenz ist dann eine (im Allgemeinen nicht triviale) Darstellung der . D.h. ist eine Linearkombination aus den in Konstruktion 80.4 beschriebenen Standardrelationen für das Dachprodukt. Wenn man eine solche Standardrelation der Länge in jedem Summanden um das Indextupel erweitert, so erhält man eine Standardrelation der Länge . Dies bedeutet, dass aus einer Darstellung der bei der Verknüpfung mit einem beliebigen eine Darstellung der entsteht. Daher ist das Dachprodukt unabhängig von der gewählten Darstellung für . Da man die Rollen von und vertauschen kann, ist die Darstellung auch unabhängig von der gewählten Darstellung für . Die Multilinearität folgt unmittelbar aus der expliziten Beschreibung.
<< | Kurs:Mathematik (Osnabrück 2009-2011)/Teil III | >> |
---|