Kurs:Analysis (Osnabrück 2021-2023)/Teil II/Vorlesung 34/kontrolle
- Stetige Abbildungen zwischen metrischen Räumen
Ein metrischer Raum ist dadurch ausgezeichnet, dass es in ihm eine Abstandsfunktion gibt, und dass dadurch zwei Punkte „näher“ zueinander liegen können als zwei andere Punkte. Bei einer Abbildung
zwischen zwei metrischen Räumen kann man sich fragen, inwiefern der Abstand im Werteraum durch den Abstand im Definitionsraum kontrollierbar ist. Sei und der Bildpunkt. Man möchte, dass für Punkte , die „nahe“ an sind, auch die Bildpunkte „nahe“ an sind. Um diese intuitive Vorstellung zu präzisieren, sei ein vorgegeben. Dieses repräsentiert eine „gewünschte Zielgenauigkeit“ (oder „Zieltoleranz“). Die Frage ist dann, ob man ein finden kann (eine „Startgenauigkeit“ oder „Starttoleranz“) mit der Eigenschaft, dass für alle mit die Beziehung gilt. Dies führt zum Begriff der stetigen Abbildung.
Es seien und metrische Räume,
eine Abbildung und . Die Abbildung heißt stetig in , wenn für jedes ein derart existiert, dass
gilt. Die Abbildung heißt stetig, wenn sie stetig in für jedes ist.
Statt mit den abgeschlossenen Ballumgebungen könnte man hier genauso gut mit den offenen Ballumgebungen arbeiten. Die einfachsten Beispiele für stetige Abbildungen sind konstante Abbildungen, die Identität eines metrischen Raumes und die Inklusion einer mit der induzierten Metrik versehenen Teilmenge eines metrischen Raumes. Siehe dazu die Aufgaben. Bei stimmt diese Definition mit der bisherigen überein.
Der folgende Satz heißt Folgenkriterium und ist eine direkte Verallgemeinerung von
Satz 12.5.
Es sei
eine Abbildung zwischen den metrischen Räumen und und sei ein Punkt. Dann sind folgende Aussagen äquivalent.
- ist stetig im Punkt .
- Für jedes
gibt es ein
mit der Eigenschaft, dass aus
folgt, dass
ist.
- Für jede konvergente Folge in mit ist auch die Bildfolge konvergent mit dem Grenzwert .
Die Äquivalenz von (1) und (2) ist klar.
Es sei nun (2) erfüllt und sei eine Folge in , die gegen konvergiert. Wir müssen zeigen, dass
ist. Dazu sei
gegeben. Wegen (2) gibt es ein mit der angegebenen Eigenschaft und wegen der Konvergenz von gegen gibt es eine natürliche Zahl derart, dass für alle
die Abschätzung
gilt. Nach der Wahl von ist dann
Es sei (3) erfüllt und vorgegeben. Wir nehmen an, dass es für alle Elemente gibt, deren Abstand zu maximal gleich ist, deren Wert unter der Abbildung aber zu einen Abstand größer als besitzt. Dies gilt dann insbesondere für die Stammbrüche , . D.h. für jede natürliche Zahl gibt es ein mit
Diese so konstruierte Folge konvergiert gegen , aber die Bildfolge konvergiert nicht gegen , da der Abstand der Bildfolgenwerte zu zumindest ist. Dies ist ein Widerspruch zu (3).
Es sei
eine Abbildung zwischen den metrischen Räumen und . Dann sind folgende Aussagen äquivalent.
- ist stetig in jedem Punkt .
- Für jeden Punkt und jedes gibt es ein mit der Eigenschaft, dass aus folgt, dass ist.
- Für jeden Punkt und jede konvergente Folge in mit ist auch die Bildfolge konvergent mit dem Grenzwert .
- Für jede offene Menge ist auch das Urbild offen.
Die Äquivalenz der ersten drei Formulierungen folgt direkt aus
Lemma 34.2.
Es sei (1) erfüllt und eine offene Menge
gegeben mit dem Urbild
.
Sei
ein Punkt mit dem Bildpunkt
.
Da offen ist, gibt es nach Definition ein
mit
.
Nach (2) gibt es ein
mit
.
Daher ist
und wir haben eine offene Ballumgebung von innerhalb des Urbilds gefunden. Deshalb ist offen.
Es sei (4) erfüllt und
mit
und
vorgegeben. Da der offene Ball offen ist, ist wegen (4) auch das Urbild offen. Da zu dieser Menge gehört, gibt es ein
mit
sodass (1) erfüllt ist.
Dies folgt am einfachsten aus der Charakterisierung von stetig mit offenen Mengen, siehe Lemma 34.3.
Bei einer bijektiven stetigen Abbildung zwischen metrischen Räumen ist die Umkehrfunktion nicht automatisch stetig, siehe Aufgabe 34.16 und Aufgabe 34.17.
Zwei metrische Räume und heißen homöomorph, wenn es eine bijektive stetige Abbildung
gibt, deren Umkehrabbildung ebenfalls stetig ist.
Eine solche Abbildung heißt Homöomorphismus.
- Verknüpfungen und stetige Abbildungen
Die erste Aussage folgt direkt aus
Zur zweiten Aussage sei und vorgegeben. Es sei . Wir setzen . Dann gilt für jedes mit die Abschätzung (wegen )
Es sei ein metrischer Raum und seien Funktionen
(für ) gegeben mit der zusammengesetzten Abbildung
Dann ist genau dann stetig, wenn alle Komponentenfunktionen stetig sind.
Es genügt, diese Aussage für zu zeigen. Dafür folgt sie direkt aus Lemma 33.14 unter Verwendung von Lemma 34.2.
Die folgende Aussage ist eine Verallgemeinerung von
Lemma 12.7.
Es sei ein metrischer Raum und seien
Dann sind auch die Funktionen
stetig. Für eine Teilmenge , auf der keine Nullstelle besitzt, ist auch die Funktion
stetig.
Wir betrachten Abbildungsdiagramme der Form
Die Abbildung links ist stetig aufgrund von Lemma 34.8. Die rechte Abbildung ist stetig aufgrund von Lemma 34.7. Daher ist wegen Lemma 34.4 auch die Gesamtabbildung stetig. Die Gesamtabbildung ist aber die Addition der beiden Funktionen. Für die Multiplikation verläuft der Beweis gleich, für die Negation und die Division muss man zusätzlich Lemma 34.6 heranziehen und (für die Division) das Diagramm
betrachten.
Eine komplex-lineare Abbildung ist auch reell-linear, und die euklidische Metrik hängt nur von der reellen Struktur ab. Wir können also annehmen. Aufgrund von Lemma 34.8 können wir annehmen. Die Abbildung sei durch
mit gegeben. Die Nullabbildung ist konstant und daher stetig, also sei . Es sei und ein vorgegeben. Für alle mit ist insbesondere für alle und daher ist
- Polynomiale Funktionen
Wir haben schon Polynome in ein und in zwei Variablen (beispielsweise bei einfachen Differentialgleichungen) verwendet. Die folgende Definition verwendet Multiindex-Schreibweise, um Polynomfunktionen in beliebig (endlich) vielen Variablen einzuführen. Dabei steht ein Index für ein Tupel
und für Variablen verwendet man die Schreibweise
Eine Funktion
die man als eine Summe der Form
mit schreiben kann, wobei nur endlich viele sind, heißt polynomiale Funktion.
Gelegentlich betrachtet man funktionale Ausdrücke für Funktionen in einer Variablen , in denen noch weitere unbestimmte Parameter vorkommen, von denen letztlich die zu untersuchende Funktion abhängt. Typische Beispiele ist die Menge aller linearen Funktionen , wo die eigentliche Funktionsvariable der linearen Funktion bezeichnet und Parameter sind, die die Steigung bzw. den Wert der linearen Funktion an der Stelle repräsentieren, oder die Menge der Parabeln , wo die Funktionsvariable bezeichnet und ein Parameter ist, der die Enge oder die Weite der Parabel bestimmt, oder die Menge der Parabeln , wo der Parameter den linearen Term und der Parameter den konstanten Term bezeichnet. Man spricht in solchen Situationen von einer Funktionenschar oder von einer Kurvenschar. Mit diesem Konzept kann man ähnlich gebaute Funktionen simultan studieren. Man interessiert sich für die Bedeutung der Parameter, wie sich diese auf den Funktionsverlauf auswirken, wie man beispielsweise aus den Parametern und die Nullstellen bestimmen kann, etc.
In einer solchen Situation kann man einen Schritt weiter gehen und die Parameter als zusätzliche prinzipiell gleichberechtigte Variablen neben ansehen. In dieser Weise entstehen (zumeist polynomiale) Funktionen in zwei oder in drei Variablen, die man mit Methoden der höherdimensionalen Analysis studieren kann. Beispielsweise kann man so Aussagen wie, dass eine kleine Änderung der Parameter den Funktionsverlauf nicht wesentlich ändert, präzisieren und überprüfen. Wenn man den Graphen der Gesamtfunktion in zwei Variablen skizziert (also eine „Gebirgsfläche“ im ), so erhält man die Graphen der Funktionen in der Schar zurück, indem man mit den Ebenen schneidet, die durch die Festlegung des Parameters gegeben sind.
Offenbar sind die Summe und die Produkte von polynomialen Funktionen wieder polynomial. Dies gilt auch, wenn man Polynome in andere Polynome einsetzt.
Die einzelnen Variablen repräsentieren die -te lineare Projektion
Nach Satz 34.10 sind diese stetig. Aufgrund von Lemma 34.9 sind dann auch die monomialen Funktionen
stetig und damit aus dem gleichen Grund überhaupt alle polynomialen Funktionen.