Kurs:Lineare Algebra/Teil I/26/Klausur mit Lösungen



Aufgabe 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20
Punkte 3 3 5 1 4 2 3 7 3 3 1 4 3 3 3 5 1 2 6 2 64




Aufgabe (3 Punkte)

Definiere die folgenden (kursiv gedruckten) Begriffe.

  1. Die Potenzmenge zu einer Menge .
  2. Ein Isomorphismus zwischen - Vektorräumen und .
  3. Elementare Zeilenumformungen an einer - Matrix über einem Körper .
  4. Eine Transposition auf einer endlichen Menge .
  5. Die adjungierte Matrix zu einer quadratischen Matrix .
  6. Ein affiner Isomorphismus

    zwischen den affinen Räumen und über den - Vektorräumen  bzw. .


Lösung

  1. Zu einer Menge nennt man die Menge aller Teilmengen von die Potenzmenge von .
  2. Ein Isomorphismus zwischen und ist eine bijektive lineare Abbildung
  3. Unter den elementaren Zeilenumformungen versteht man die Manipulationen:
    1. Vertauschung von zwei Zeilen.
    2. Multiplikation einer Zeile mit .
    3. Addition des -fachen einer Zeile zu einer anderen Zeile.
  4. Eine Transposition auf ist eine Permutation auf , die genau zwei Elemente miteinander vertauscht und alle anderen Elemente unverändert lässt.
  5. Die Matrix

    wobei die Restmatrix zur -ten Zeile und zur -ten Spalte ist, heißt die adjungierte Matrix von .

  6. Eine bijektive affine Abbildung

    heißt affiner Isomorphismus.


Aufgabe (3 Punkte)

Formuliere die folgenden Sätze.

  1. Das Basisaustauschlemma.
  2. Die Formel für die Determinante für eine obere Dreiecksmatrix.
  3. Der Satz über Ideale in einem Polynomring in einer Variablen über einem Körper .


Lösung

  1. Es sei ein Körper und ein -Vektorraum mit einer Basis . Es sei ein Vektor mit einer Darstellung

    wobei sei für ein bestimmtes . Dann ist auch die Familie

    eine Basis von .
  2. Für eine obere Dreiecksmatrix

    ist

  3. In einem Polynomring über einem Körper ist jedes Ideal ein Hauptideal.


Aufgabe (5 (1+1+1+2) Punkte)

Ein Zug ist Meter lang (ohne Lokomotive) und bewegt sich mit Stundenkilometer. Lucy Sonnenschein hat ihr Fahrrad mit in den Zug genommen und fährt mit einer Geschwindigkeit von Metern pro Sekunde von ganz hinten nach ganz vorne.

  1. Wie viele Sekunden benötigt Lucy für die gesamte Zuglänge?
  2. Welche Geschwindigkeit (in Meter pro Sekunde) hat Lucy bezogen auf die Umgebung?
  3. Welche Entfernung (in Meter) legt der Zug während der Fahrradfahrt zurück?
  4. Berechne auf zwei verschiedene Arten, welche Entfernung Lucy während ihrer Fahrradfahrt bezogen auf die Umgebung zurücklegt.


Lösung

  1. Lucy benötigt Sekunden für den Meter langen Zug.
  2. In Meter pro Sekunde hat der Zug eine Geschwindigkeit von

    Da die beiden Bewegungen sich überlagern, ist die Gesamtgeschwindigkeit von Lucy gleich Meter pro Sekunde.

  3. In den Sekunden legt der Zug

    Meter zurück.

  4. Man kann die vom Zug und die von Lucy im Zug zurückgelegte Strecke addieren, dies ergibt

    Meter. Ebenso kann man mit ihrer Geschwindigkeit bezogen auf die Umgebung rechnen, und erhält ebenfalls

    Meter.


Aufgabe (1 Punkt)

Bestimme die Lösungsmenge des Ungleichungssystems

und

über .


Lösung

Es soll einerseits

und andererseits

sein. Wegen

ist das nicht gleichzeitig erfüllbar, die Lösungsmenge ist also leer.


Aufgabe (4 Punkte)

Löse das inhomogene Gleichungssystem


Lösung

Wir eliminieren zuerst die Variable , indem wir die erste Gleichung zweimal auf die vierte addieren. Dies führt auf

Nun eliminieren wir die Variable , indem wir (bezogen auf das vorhergehende System) und ausrechnen. Dies führt auf

Es ergibt sich nun wenn man die erste Gleichung mit 4 multipliziert und 3 mal die zweite subtrahiert

und

Rückwärts gelesen ergibt sich

und


Aufgabe (2 (1+1) Punkte)

Es sei ein Körper. Wir betrachten die Untervektorräume , die durch

bzw.

gegeben sind.

  1. Ist abgeschlossen unter der Matrizenmultiplikation?
  2. Ist abgeschlossen unter der Matrizenmultiplikation?


Lösung

  1. ist nicht abgeschlossen unter der Matrizenmultiplikation, da beispielsweise

    ist.

  2. ist abgeschlossen unter der Matrizenmultiplikation. Es ist ja

    ist, da, wenn man die zweite oder dritte Zeile links mit der ersten Spalte rechts multipliziert, in jedem Summanden eine Null beteiligt ist.


Aufgabe (3 Punkte)

Es sei ein Körper und ein - Vektorraum mit endlicher Dimension

Es seien Vektoren in gegeben. Zeige, dass die folgenden Eigenschaften äquivalent sind.

  1. bilden eine Basis von .
  2. bilden ein Erzeugendensystem von .
  3. sind linear unabhängig.


Lösung

Eine Basis ist insbesondere ein Erzeugendensystem und linear unabhängig, deshalb folgt sowohl (2) als auch (3) aus (1). Es sei (2) erfüllt, d.h. ist ein Erzeugendensystem. Wenn es keine Basis wäre, so wäre dieses System nach Satz 7.11 (Lineare Algebra (Osnabrück 2024-2025)) kein minimales Erzeugendensystem und man könnte Vektoren herausnehmen, und es würde ein Erzeugendensystem bleiben. Dies widerspricht der Wohldefiniertheit der Dimension. Es sei (3) erfüllt, d.h. ist ein System aus linear unabhängigen Vektoren. Wenn es keine Basis wäre, so wäre es nach Satz 7.11 (Lineare Algebra (Osnabrück 2024-2025)) nicht maximal linear unabhängig, und man könnte es durch Hinzunahme von einem Vektor zu einem größeren linear unabhängigen System vergrößern. Auch dies wiederspricht der Wohldefiniertheit der Dimension.


Aufgabe (7 Punkte)

Es sei ein Körper und es seien und Vektorräume über . Es sei eine lineare Abbildung und eine surjektive lineare Abbildung. Es sei vorausgesetzt, dass

ist. Zeige, dass es eine eindeutig bestimmte lineare Abbildung

derart gibt, dass gilt.


Lösung

Es kann maximal nur eine solche Abbildung

mit geben, da es zu jedem ein mit gibt. Somit muss

gelten. Es sei eine Basis von . Für zwei Vektoren aus der Urbildmenge zu einem unter ist die Differenz ein Element von . Wegen der Bedingung werden alle Elemente aus einer solchen Urbildmenge unter auf ein einziges Element in abgebildet. Es sei ein Urbild von . Wir setzen

und betrachten die dadurch mit dem Festlegungssatz gegebene lineare Abbildung

Für jedes ist

und somit ist mit einem . Daher ist


Aufgabe (3 Punkte)

Bestimme die Ordnung der Matrix

über dem Körper mit Elementen.


Lösung

Es ist

und

und

also ist die Ordnung gleich .


Aufgabe (3 Punkte)

Es sei ein Körper und ein - Vektorraum. Es sei

eine multilineare Abbildung. Es seien . Ziehe in

Summen und Skalare nach außen.


Lösung

Nach dem Distributivgesetz für multilineare Abbildungen muss man sämtliche Kombinationen der Vektoren durchgehen und die Koeffizienten miteinander multiplizieren. Dies ergibt Es ist


Aufgabe (1 Punkt)

Bestimme die Determinante zur Matrix


Lösung

Die Determinante ist , da eine obere Dreiecksmatrix vorliegt, deren Hauptdiagonalelemente sind.


Aufgabe (4 Punkte)

Bestimme die komplexen Zahlen , für die die Matrix

nicht invertierbar ist.


Lösung

Die Matrix ist genau dann invertierbar, wenn ihre Determinante ist. Wir müssen also die Nullstellen der Determinante bestimmen. Die Determinante ist (nach der Regel von Sarrus)

Dies ist gleich genau dann, wenn

ist. Durch quadratisches Ergänzen führt diese Gleichung auf

Daher sind

die beiden einzigen Lösungen der quadratischen Gleichung. Diese zwei reellen Zahlen sind also die einzigen (reellen oder komplexen) Zahlen, für die die Matrix nicht invertierbar ist.


Aufgabe (3 (1+1+1) Punkte)

Wir betrachten die Permutation

  1. Berechne .
  2. Bestimme die Zykelzerlegung von .
  3. Berechne das Vorzeichen von .


Lösung

  1. wird durch die Wertetabelle

    beschrieben.

  2. Es ist

    Die Zykelzerlegung ist also

  3. Die beiden beteiligten Zykel haben ungerade Länge, somit ist ihr Signum jeweils . Wegen der Multiplikativität des Signums ist somit auch das Signum von gleich .


Aufgabe (3 Punkte)

Bestimme die -Koordinaten der Schnittpunkte der Graphen der beiden reellen Polynome

und


Lösung

Ein Schnittpunkt liegt genau dann an den Stellen vor, die eine Nullstelle von sind. Es ist

Wir normieren dieses quadratische Polynom und erhalten die Bedingung

Die Lösungen dafür sind

Dies sind die -Koordinaten der beiden Schnittpunkte.


Aufgabe (3 Punkte)

Man finde ein Polynom

mit derart, dass die folgenden Bedingungen erfüllt werden.


Lösung

Die Bedingungen führen auf das lineare Gleichungssystem

führt auf

also

In eingesetzt ergibt sich

Das gesuchte Polynom ist also


Aufgabe (5 Punkte)

Es sei ein endlichdimensionaler Vektorraum über einem Körper und es sei

eine lineare Abbildung. Zeige, dass das charakteristische Polynom und das Minimalpolynom die gleichen Nullstellen besitzen.


Lösung

Dass die Nullstellen des Minimalpolynoms auch Nullstellen des charakteristischen Polynoms sind, folgt direkt aus Cayley-Hamilton.

Umgekehrt sei eine Nullstelle des charakteristischen Polynoms und sei ein Eigenvektor von zum Eigenwert , den es nach Satz 23.2 (Lineare Algebra (Osnabrück 2024-2025)) gibt. Das Minimalpolynom schreiben wir als

wobei nullstellenfrei sei. Dann ist

Wir wenden dies auf an. Nach Lemma 24.4 (Lineare Algebra (Osnabrück 2024-2025)) bilden die Faktoren den Vektor auf bzw. auf ab. Insgesamt wird somit auf

abgebildet. Da die Gesamtabbildung die Nullabbildung und ist, muss ein sein.


Aufgabe (1 Punkt)

Es sei eine lineare Abbildung auf einem - Vektorraum und es sei ein - invarianter Untervektorraum. Zeige, dass zu jedem invariant bezüglich ist.


Lösung

Es sei . Dann ist

Wegen und gehört auch dieses Element zu .


Aufgabe (2 Punkte)

Ist die Menge der nilpotenten - Matrizen ein Untervektorraum des Matrizenraums ?


Lösung

Die Matrizen

sind beide nilpotent. Ihre Summe ist

Diese ist invertierbar und insbesondere nicht nilpotent. Somit sind die nilpotenten Matrizen nicht abgeschlossen unter der Addition und bilden insbesondere keinen Untervektorraum.


Aufgabe (6 Punkte)

Beweise den Satz von der kanonischen additiven Zerlegung für eine trigonalisierbare Abbildung.


Lösung

Nach Satz 26.14 (Lineare Algebra (Osnabrück 2024-2025)) ist

wobei die die Haupträume zu den Eigenwerten seien, und es ist

mit . Es sei

die Hintereinanderschaltung , d.h. ist insbesondere eine Projektion. Wir setzen

Diese Abbildung ist offenbar diagonalisierbar, auf ist es die Multiplikation mit . Es sei

Die Nilpotenz dieser Abbildung kann man auf den einzeln überprüfen, und dort ist

also nilpotent. Ferner kommutieren und , da auf die Identität ist und auf , , die Nullabbildung. Damit kommutieren auch die direkten (skalaren) Summen davon und damit kommutieren und , also auch und .


Aufgabe (2 Punkte)

Bestimme, ob im der Ausdruck

eine baryzentrische Kombination ist.


Lösung

Wegen

liegt keine baryzentrische Kombination vor.